Prove that if π|π and πβ 0, then |π| β€ |π|.
"a|b\\Rightarrow na=b\\Rightarrow \\left| b \\right|=\\left| na \\right|=\\left| n \\right|\\left| a \\right|\\\\Since\\,\\,b\\ne 0, n\\ne 0\\Rightarrow n\\in \\left\\{ -1,1,-2,2,... \\right\\} \\Rightarrow \\left| n \\right|\\geqslant 1\\\\Then\\\\\\left| b \\right|\\geqslant 1\\cdot \\left| a \\right|=\\left| a \\right|"
Comments
Leave a comment