Prove that if 𝑎|𝑏 and 𝑏≠0, then |𝑎| ≤ |𝑏|.
a∣b⇒na=b⇒∣b∣=∣na∣=∣n∣∣a∣Since b≠0,n≠0⇒n∈{−1,1,−2,2,...}⇒∣n∣⩾1Then∣b∣⩾1⋅∣a∣=∣a∣a|b\Rightarrow na=b\Rightarrow \left| b \right|=\left| na \right|=\left| n \right|\left| a \right|\\Since\,\,b\ne 0, n\ne 0\Rightarrow n\in \left\{ -1,1,-2,2,... \right\} \Rightarrow \left| n \right|\geqslant 1\\Then\\\left| b \right|\geqslant 1\cdot \left| a \right|=\left| a \right|a∣b⇒na=b⇒∣b∣=∣na∣=∣n∣∣a∣Sinceb=0,n=0⇒n∈{−1,1,−2,2,...}⇒∣n∣⩾1Then∣b∣⩾1⋅∣a∣=∣a∣
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments