Question #272613

.Solve𝑥 ≡ 7(𝑚𝑜𝑑 11) 𝑥 ≡ 6(𝑚𝑜𝑑 8) 𝑥 ≡ 10(𝑚𝑜𝑑 15) Also find the


smallest non-negative solutions

1
Expert's answer
2021-12-15T06:20:22-0500

Let us solve the following system of congruences:


{x7mod11x6mod8x10mod15.\begin{cases} x≡7 \mod 11\\ x≡6\mod 8\\ x≡10\mod 15 \end{cases}.


The first congruence is equivalent to the equality x=7+11t, tZ.x=7+11t,\ t\in\Z. Let us put this in the second conqruence. Then we have 7+11t6mod8.7+11t\equiv 6 \mod 8. The last conqruence is equivalent to 11t1mod8,11t\equiv -1 \mod 8, and hence to (118)t(161)mod8,(11-8)t\equiv (16-1) \mod 8, that is 3t15mod8.3t\equiv 15 \mod 8. Since 3 and 8 are relatively prime, we conclude that t5mod8.t\equiv 5\mod 8. It follows that t=5+8s,t=5+8s, and hence x=7+11(5+8s)=62+88s.x=7+11(5+8s)=62+88s. Let us put this in the last conqruence. Then we get 62+88s10mod15,62+88s≡ 10 \mod 15, which is equivalent to 88s52mod15,88s≡-52\mod 15, and hence to 13s52mod15.13s≡-52\mod 15. It follows that s4mod15,s\equiv-4\mod 15, and hence s=4+15k.s=-4+15k. We conclude that x=62+88s=62+88(4+15k)=290+1320k.x=62+88s=62+88(-4+15k)=-290+1320k.


Consequently, the solution of the system is x290mod1320x\equiv -290\mod 1320 or [290]1320.[-290]_{1320}.


The smallest non-negative solution is 290+1320=1030.-290+1320=1030.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS