If m,n=1,show that m,φn=1
Since gcd(m,n)=1,\operatorname{gcd}(m, n)=1,gcd(m,n)=1, you know from Euler-Fermat that
mφ(n)≡1( mod n)m^{\varphi(n)} \equiv 1 \quad(\bmod \ n)mφ(n)≡1(mod n)
and, similarly,
nφ(m)≡1( mod m)n^{\varphi(m)} \equiv 1 \quad(\bmod \ m)nφ(m)≡1(mod m)
Since nφ(m)≡0( mod n),n^{\varphi(m)} \equiv 0(\bmod n),nφ(m)≡0(modn), we also have
mφ(n)+nφ(m)≡1+0( mod n)m^{\varphi(n)}+n^{\varphi(m)} \equiv 1+0 \quad(\bmod \ n)mφ(n)+nφ(m)≡1+0(mod n)
mφ(n)+nφ(m)≡1+0( mod m)m^{\varphi(n)}+n^{\varphi(m)} \equiv 1+0 \quad(\bmod \ m)mφ(n)+nφ(m)≡1+0(mod m)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment