Answer to Question #272609 in Combinatorics | Number Theory for Prathibha Rose

Question #272609



If m,n=1,show that m,φn=1

1
Expert's answer
2021-12-14T07:59:06-0500

Since gcd(m,n)=1,\operatorname{gcd}(m, n)=1, you know from Euler-Fermat that

mφ(n)1(mod n)m^{\varphi(n)} \equiv 1 \quad(\bmod \ n)

and, similarly,

nφ(m)1(mod m)n^{\varphi(m)} \equiv 1 \quad(\bmod \ m)

Since nφ(m)0(modn),n^{\varphi(m)} \equiv 0(\bmod n), we also have

mφ(n)+nφ(m)1+0(mod n)m^{\varphi(n)}+n^{\varphi(m)} \equiv 1+0 \quad(\bmod \ n)

and, similarly,

mφ(n)+nφ(m)1+0(mod m)m^{\varphi(n)}+n^{\varphi(m)} \equiv 1+0 \quad(\bmod \ m)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment