The formula for calculating the sum of all natural integers from 1 to n is well-known:
Sn = 1 + 2 + 3 + ... + n =
n
2 + n
2
Similary, we know about the formula for calculating the sum of the first n squares:
Qn = 1 · 1 + 2 · 2 + 3 · 3 + ... + n · n =
n
3
3
+
n
2
2
+
n
6
Now, we reduce one of the two multipliers of each product by one to get the following sum:
Mn = 0 · 1 + 1 · 2 + 2 · 3 + 3 · 4 + ... + (n − 1) · n
Find an explicit formula for calculating the sum Mn.
"S_n = 1+2+3+...+n = \\frac{n^2+n}{2} \\\\\n\nQ_n = 1 \\cdot 1+2 \\cdot 2+3 \\cdot 3+...+n \\cdot n = \\frac{n^3}{3} + \\frac{n^2}{2} + \\frac{n}{6} \\\\\n\nM_n = 0 \\cdot 1 + 1 \\cdot 2 +2 \\cdot 3 +...+(n-1)n \\\\\n\n= (1-1) \\cdot 1 + (2-1) \\cdot 2 + (3-1) \\cdot 3 + ...+(n-1) \\cdot n \\\\\n\n= (1 \\cdot 1 -1 \\cdot 1) + (2 \\cdot 2 -1 \\cdot 2) + (3 \\cdot 3- 1 \\cdot 3) + \u2026 + ( n \\cdot n -1 \\cdot n) \\\\\n\n= 1 \\cdot 1 + 2 \\cdot 2 + 3 \\cdot 3 +...+ n \\cdot n -(1 \\cdot 1 + 1 \\cdot 2 + 1 \\cdot 3 +...+ 1 \\cdot n) \\\\\n\n= Q_n -S_n \\\\\n\n= \\frac{n^3}{3} + \\frac{n^2}{2} + \\frac{n}{6} -(\\frac{n^2+n}{2}) \\\\\n\n= \\frac{n^3}{3} + \\frac{n^2}{2} + \\frac{n}{6} -\\frac{n^2}{2} -\\frac{n}{2} \\\\\n\n= \\frac{n^3}{3} + \\frac{n-3n}{6} \\\\\n\n= \\frac{n^3}{3} + \\frac{-2n}{6} \\\\\n\n= \\frac{n^3}{3} - \\frac{n}{3} \\\\\n\nM_n = \\frac{n^3}{3} -\\frac{n}{3}"
Comments
Leave a comment