The formula for calculating the sum of all natural integers from 1 to n is well-known:
Sn = 1 + 2 + 3 + ... + n =
n
2 + n
2
Similary, we know about the formula for calculating the sum of the first n squares:
Qn = 1 · 1 + 2 · 2 + 3 · 3 + ... + n · n =
n
3
3
+
n
2
2
+
n
6
Now, we reduce one of the two multipliers of each product by one to get the following sum:
Mn = 0 · 1 + 1 · 2 + 2 · 3 + 3 · 4 + ... + (n − 1) · n
Find an explicit formula for calculating the sum Mn.
Here
term is-
So The Sum ,
Comments
Leave a comment