Since the numbers 3 5 7 are coprime, we use the Chinese remainder theorem
"{M_0} = {m_1}{m_2}{m_3}=3*5*7 =105"
"M_i =\\frac{M_0}{m_i}"
"M_1 =\\frac{M_0}{m_1}=\\frac{105}{3}=35"
"M_2 =\\frac{M_0}{m_2}=\\frac{105}{5}=21"
"M_3 =\\frac{M_0}{m_3}=\\frac{105}{7}=15"
"M_iy_i =a_i(mod\\ m_i)"
"35y_1 =2(mod\\ 3)"
"33y_1+2y_1 =2(mod\\ 3)"
"2y_1 =2(mod\\ 3)"
"y_1=1"
"21y_2 =3(mod\\ 5)"
"20y_2+y_2 =3(mod\\ 5)"
"y_2 =3(mod\\ 5)"
"y_2 =8"
"15y_3=2(mod\\ 7)"
"14y_3+y_3=2(mod\\ 7)"
"y_3=2(mod\\ 7)"
"y_3=9"
"x =( M_1y_1+M_2y_2+M_3y_3)(mod\\ M_0)"
"x =(35*1+21*8+15*9)(mod\\ 105)"
"x= 338(mod\\ 105)"
"x=23"
Answer: x=23
Comments
Leave a comment