1) By Fermat’s Little Theorem,
37−1≡1(mod7)
Then
312≡1(mod7), 318≡1(mod7), 324≡1(mod7), 330≡1(mod7)
31≡3(mod7)
331≡3(mod7)
2) By Fermat’s Little Theorem,
559−1≡1(mod59)
Then 5116≡1(mod59),
53≡7(mod59)
5119≡7(mod59)
3) By Fermat’s Little Theorem,
213−1≡1(mod13),313−1≡1(mod13)
260≡1(mod13),324≡1(mod13)
Then
270+330≡210+36≡1024+729≡
≡114+79≡193≡11(mod13)
270+330≡11(mod13)
4) By Wilson's Theorem,
(61−1)!≡−1(mod61)
(−1)(−2)(−3)(−4)(−5)(−6)(−7)53!≡−1(mod61)
53!(2)(3)(4)(5)(6)(7)≡1(mod61)
(2)(5)(6)=60
53!(−1)(3)(4)(7)≡1(mod61)
53!(3)(4)(7)≡−1(mod61)
(3)(4)(7)=84
53!(23)≡−1(mod61)
Let's do Euclidean algorithm to compute 23−1 mod61
61=2(23)+15
23=15+8
15=8+7
8=7+1
Hence
1=8−7=8−(15−8)=2(8)−15=2(23−15)−15=
=2(23)−3(15)=2(23)−3(61−2(23))=
=8(23)−3(61)
23−1≡8(mod61)
Hence
53!≡−8(mod61)
53!≡53(mod61)
5) 139 is the prime number. By Wilson's Theorem,
(139−1)!≡−1(mod139)
(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)(−1)≡
≡(9)(8)(6)(5)(4)(3)(−1)≡(9)(8)(3)(−19)(−1)≡
≡(27)(13)≡73(mod139)
149!≡73(mod139)
6) By Fermat’s Little Theorem,
x29−1≡1(mod29)
86=3(28)+2
x86≡x2(mod29)
Then
x2≡6(mod29)
x2≡64(mod29)
x2−64≡0(mod29)
(x−8)(x+8)≡(mod29)
x≡8(mod29) or x≡21(mod29)
Comments