Question #135648
Using Wilson's and Fermat's Little Theorem
What is the remainder when:
1.) 3^{31}\div73 31 ÷ 7
2.) 5^{119}\div595 119 ÷ 59
3.) 2^{70}+3^{30}\div132 70 + 3 30 ÷ 13
4.) 53!\div6153 ! ÷ 61
5.) 149!\div139149 ! ÷ 139
Find all integers x such that: x^{86}\equiv6\left(\mod29\right)
1
Expert's answer
2020-09-29T16:42:03-0400

1) By Fermat’s Little Theorem,

3711(mod7)3^{7-1}\equiv1(\bmod7)

Then

3121(mod7),3^{12}\equiv1(\bmod7), 3181(mod7),3^{18}\equiv1(\bmod7), 3241(mod7),3^{24}\equiv1(\bmod7), 3301(mod7)3^{30}\equiv1(\bmod7)

313(mod7)3^{1}\equiv3(\bmod7)

3313(mod7)3^{31}\equiv3(\bmod7)


2) By Fermat’s Little Theorem,

55911(mod59)5^{59-1}\equiv1(\bmod59)

Then 51161(mod59),5^{116}\equiv1(\bmod59),

537(mod59)5^{3}\equiv7(\bmod59)

51197(mod59)5^{119}\equiv7(\bmod59)


3) By Fermat’s Little Theorem,

21311(mod13),31311(mod13)2^{13-1}\equiv1(\bmod13), 3^{13-1}\equiv1(\bmod13)

2601(mod13),3241(mod13)2^{60}\equiv1(\bmod13), 3^{24}\equiv1(\bmod13)

Then

270+330210+361024+7292^{70}+3^{30}\equiv2^{10}+3^{6}\equiv1024+729\equiv

114+7919311(mod13)\equiv114+79\equiv193\equiv11(\bmod13)

270+33011(mod13)2^{70}+3^{30}\equiv11(\bmod13)


4) By Wilson's Theorem,

(611)!1(mod61)(61-1)!\equiv-1(\bmod61)

(1)(2)(3)(4)(5)(6)(7)53!1(mod61)(-1)(-2)(-3)(-4)(-5)(-6)(-7)53!\equiv-1(\bmod61)

53!(2)(3)(4)(5)(6)(7)1(mod61)53!(2)(3)(4)(5)(6)(7)\equiv1(\bmod61)

(2)(5)(6)=60(2)(5)(6)=60

53!(1)(3)(4)(7)1(mod61)53!(-1)(3)(4)(7)\equiv1(\bmod61)

53!(3)(4)(7)1(mod61)53!(3)(4)(7)\equiv-1(\bmod61)

(3)(4)(7)=84(3)(4)(7)=84

53!(23)1(mod61)53!(23)\equiv-1(\bmod61)

Let's do Euclidean algorithm to compute 23123^{-1} mod61\bmod61

61=2(23)+1561=2(23)+15

23=15+823=15+8

15=8+715=8+7

8=7+18=7+1

Hence

1=87=8(158)=2(8)15=2(2315)15=1=8-7=8-(15-8)=2(8)-15=2(23-15)-15=

=2(23)3(15)=2(23)3(612(23))==2(23)-3(15)=2(23)-3(61-2(23))=

=8(23)3(61)=8(23)-3(61)

2318(mod61)23^{-1}\equiv8(\bmod61)


Hence

53!8(mod61)53!\equiv-8(\bmod61)

53!53(mod61)53!\equiv53(\bmod61)


5) 139 is the  prime number. By Wilson's Theorem,

(1391)!1(mod139)(139-1)!\equiv-1(\bmod139)

(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)(1)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)(-1)\equiv

(9)(8)(6)(5)(4)(3)(1)(9)(8)(3)(19)(1)\equiv(9)(8)(6)(5)(4)(3)(-1)\equiv(9)(8)(3)(-19)(-1)\equiv

(27)(13)73(mod139)\equiv(27)(13)\equiv73(\bmod139)

149!73(mod139)149!\equiv73(\bmod139)


6) By Fermat’s Little Theorem,

x2911(mod29)x^{29-1}\equiv1(\bmod29)

86=3(28)+286=3(28)+2

x86x2(mod29)x^{86}\equiv x^2(\bmod29)

Then

x26(mod29)x^{2}\equiv 6(\bmod29)

x264(mod29)x^{2}\equiv 64(\bmod29)

x2640(mod29)x^{2}-64\equiv 0(\bmod29)

(x8)(x+8)(mod29)(x-8)(x+8)\equiv (\bmod29)


x8(mod29)x\equiv 8(\bmod29) or x21(mod29)x\equiv 21(\bmod29)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS