SolutionnP8+nP15+nP20+1=n(equation1)
nP9+nP13+4=n(equation2)
equation1=equation2
nP8+nP15+nP20+1=nP9+nP13+4
If each term of the equation is rewritten using factorial function, then the equation becomes
(nβ8)!n!ββ+(nβ13)!n!ββ+(nβ20)!n!β+1=(nβ9)!n!ββ+(nβ15)!n!ββ+4
Now to solve for the value of n, we need a function f(n);
f(n)=nP8+nP13+nP20+1βnP9βnP15β4
Let's find the value of n that satisfies the equation
For n = 20, 21, 22, 23, 24, 25, 26, 27, 28 since f(n) is a monotonically increasing function of n.
f(20)=(20β8)!20!ββ+(20β13)!20!ββ+(20β20)!20!β+1β(20β9)!20!βββ(20β15)!20!βββ4=2.41β1018
f(21)=(21β8)!21!ββ+(21β13)!21!ββ+(21β20)!21!β+1β(21β9)!21!βββ(21β15)!21!βββ4=5.1β1019
f(22)=(22β8)!22!ββ+(22β13)!22!ββ+(22β20)!22!β+1β(22β9)!22!βββ(22β15)!22!βββ4=5.62β1020
f(23)=(23β8)!23!ββ+(23β13)!23!ββ+(23β20)!23!β+1β(23β9)!23!βββ(23β15)!23!βββ4=4.31β1021
f(24)=(24β8)!24!ββ+(24β13)!24!ββ+(24β20)!24!β+1β(24β9)!24!βββ(24β15)!24!βββ4=2.59β1022
f(25)=(25β8)!25!ββ+(25β13)!25!ββ+(25β20)!25!β+1β(25β9)!25!βββ(25β15)!25!βββ4=1.29β1023
f(26)=(26β8)!26!ββ+(26β13)!26!ββ+(26β20)!26!β+1β(26β9)!26!βββ(26β15)!26!βββ4=5.6β1023
f(27)=(27β8)!27!ββ+(27β13)!27!ββ+(27β20)!27!β+1β(27β9)!27!βββ(27β15)!27!βββ4=2.16β1024
f(28)=(28β8)!28!ββ+(28β13)!28!ββ+(28β20)!28!β+1β(28β9)!28!βββ(28β15)!28!βββ4=7.56β1024
β΄ Note that the equation f(n) does not hold for any value of n .
Here is the graph of the function.
Notice that the value of f(n) is varying abruptly.
From the graph, we can clearly see a monotonically increasing trend.
We therefore conclude that the equation does not hold for any value of n.
Comments