Question #128646
nP8+nP15+nP20+1=n (equation 1)
nP9+nP13+4=n (equation 2)
1
Expert's answer
2020-08-09T18:17:31-0400
SolutionSolution

nP8+nP15+nP20+1=n(equation1)nP8+nP15+nP20+1=n (equation 1)

nP9+nP13+4=n(equation2)nP9+nP13+4=n (equation 2)


equation1=equation2equation1=equation2

nP8+nP15+nP20+1=nP9+nP13+4nP8+nP15+nP20+1=nP9+nP13+4


If each term of the equation is rewritten using factorial function, then the equation becomes


n!(nβˆ’8)!​+n!(nβˆ’13)!​+n!(nβˆ’20)!+1=n!(nβˆ’9)!​+n!(nβˆ’15)!​+4\frac{n!}{(nβˆ’8)!}​+\frac{n!}{(nβˆ’13)!}​+\frac{n!}{(nβˆ’20)!}+1=\frac{n!}{(nβˆ’9)!}​+\frac{n!}{(nβˆ’15)!}​+4

Now to solve for the value of n, we need a function f(n);


f(n)=nP8+nP13+nP20+1βˆ’nP9βˆ’nP15βˆ’4f(n) = nP8 + nP13 + nP20 + 1- nP9 - nP15 - 4


Let's find the value of n that satisfies the equation


For n = 20, 21, 22, 23, 24, 25, 26, 27, 28 since f(n) is a monotonically increasing function of n.



f(20)=20!(20βˆ’8)!​+20!(20βˆ’13)!​+20!(20βˆ’20)!+1βˆ’20!(20βˆ’9)!β€‹βˆ’20!(20βˆ’15)!β€‹βˆ’4=2.41βˆ—1018f(20) =\frac{20!}{(20βˆ’8)!}​+\frac{20!}{(20βˆ’13)!}​+\frac{20!}{(20βˆ’20)!}+1-\frac{20!}{(20βˆ’9)!}​-\frac{20!}{(20βˆ’15)!}​-4= 2.41 * 10^{18}


f(21)=21!(21βˆ’8)!​+21!(21βˆ’13)!​+21!(21βˆ’20)!+1βˆ’21!(21βˆ’9)!β€‹βˆ’21!(21βˆ’15)!β€‹βˆ’4=5.1βˆ—1019f(21) =\frac{21!}{(21βˆ’8)!}​+\frac{21!}{(21βˆ’13)!}​+\frac{21!}{(21βˆ’20)!}+1-\frac{21!}{(21βˆ’9)!}​-\frac{21!}{(21βˆ’15)!}​-4= 5.1 * 10^{19}


f(22)=22!(22βˆ’8)!​+22!(22βˆ’13)!​+22!(22βˆ’20)!+1βˆ’22!(22βˆ’9)!β€‹βˆ’22!(22βˆ’15)!β€‹βˆ’4=5.62βˆ—1020f(22) =\frac{22!}{(22βˆ’8)!}​+\frac{22!}{(22βˆ’13)!}​+\frac{22!}{(22βˆ’20)!}+1-\frac{22!}{(22βˆ’9)!}​-\frac{22!}{(22βˆ’15)!}​-4= 5.62 * 10^{20}


f(23)=23!(23βˆ’8)!​+23!(23βˆ’13)!​+23!(23βˆ’20)!+1βˆ’23!(23βˆ’9)!β€‹βˆ’23!(23βˆ’15)!β€‹βˆ’4=4.31βˆ—1021f(23) =\frac{23!}{(23βˆ’8)!}​+\frac{23!}{(23βˆ’13)!}​+\frac{23!}{(23βˆ’20)!}+1-\frac{23!}{(23βˆ’9)!}​-\frac{23!}{(23βˆ’15)!}​-4= 4.31 * 10^{21}


f(24)=24!(24βˆ’8)!​+24!(24βˆ’13)!​+24!(24βˆ’20)!+1βˆ’24!(24βˆ’9)!β€‹βˆ’24!(24βˆ’15)!β€‹βˆ’4=2.59βˆ—1022f(24) =\frac{24!}{(24βˆ’8)!}​+\frac{24!}{(24βˆ’13)!}​+\frac{24!}{(24βˆ’20)!}+1-\frac{24!}{(24βˆ’9)!}​-\frac{24!}{(24βˆ’15)!}​-4= 2.59 * 10^{22}


f(25)=25!(25βˆ’8)!​+25!(25βˆ’13)!​+25!(25βˆ’20)!+1βˆ’25!(25βˆ’9)!β€‹βˆ’25!(25βˆ’15)!β€‹βˆ’4=1.29βˆ—1023f(25) =\frac{25!}{(25βˆ’8)!}​+\frac{25!}{(25βˆ’13)!}​+\frac{25!}{(25βˆ’20)!}+1-\frac{25!}{(25βˆ’9)!}​-\frac{25!}{(25βˆ’15)!}​-4= 1.29 * 10^{23}


f(26)=26!(26βˆ’8)!​+26!(26βˆ’13)!​+26!(26βˆ’20)!+1βˆ’26!(26βˆ’9)!β€‹βˆ’26!(26βˆ’15)!β€‹βˆ’4=5.6βˆ—1023f(26) =\frac{26!}{(26βˆ’8)!}​+\frac{26!}{(26βˆ’13)!}​+\frac{26!}{(26βˆ’20)!}+1-\frac{26!}{(26βˆ’9)!}​-\frac{26!}{(26βˆ’15)!}​-4= 5.6 * 10^{23}


f(27)=27!(27βˆ’8)!​+27!(27βˆ’13)!​+27!(27βˆ’20)!+1βˆ’27!(27βˆ’9)!β€‹βˆ’27!(27βˆ’15)!β€‹βˆ’4=2.16βˆ—1024f(27) =\frac{27!}{(27βˆ’8)!}​+\frac{27!}{(27βˆ’13)!}​+\frac{27!}{(27βˆ’20)!}+1-\frac{27!}{(27βˆ’9)!}​-\frac{27!}{(27βˆ’15)!}​-4= 2.16 * 10^{24}


f(28)=28!(28βˆ’8)!​+28!(28βˆ’13)!​+28!(28βˆ’20)!+1βˆ’28!(28βˆ’9)!β€‹βˆ’28!(28βˆ’15)!β€‹βˆ’4=7.56βˆ—1024f(28) =\frac{28!}{(28βˆ’8)!}​+\frac{28!}{(28βˆ’13)!}​+\frac{28!}{(28βˆ’20)!}+1-\frac{28!}{(28βˆ’9)!}​-\frac{28!}{(28βˆ’15)!}​-4= 7.56 * 10^{24}


∴\therefore Note that the equation f(n)f(n) does not hold for any value of nn .


Here is the graph of the function.




Notice that the value of f(n)f(n) is varying abruptly.

From the graph, we can clearly see a monotonically increasing trend.


We therefore conclude that the equation does not hold for any value of n.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS