The given curve can be written as
y 2 = x 2 ( 2 a − x ) ( x − a ) y^2={x^2(2a-x) \over (x-a)} y 2 = ( x − a ) x 2 ( 2 a − x ) 1.Symmetry
The curve is not symmetrical about the y-axis.
The curve is symmetrical about the x-axis.
( − y ) 2 = x 2 ( 2 a − x ) ( x − a ) ⟹ ( − y ) 2 = y 2 (-y)^2={x^2(2a-x) \over (x-a)}\Longrightarrow (-y)^2=y^2 ( − y ) 2 = ( x − a ) x 2 ( 2 a − x ) ⟹ ( − y ) 2 = y 2 The curve is not symmetrical in opposite quadrants.
The curve is not symmetrical about the line y=x.
2. Origin.
The curve passes through the origin
x = 0 ⟹ y = 0 x=0 \Longrightarrow y=0 x = 0 ⟹ y = 0 3. Intersection with the coordinate axes.
y − i n t e r c e p t : x = 0 ⟹ y = 0 , p o i n t ( 0 , 0 ) y-intercept: x=0\Longrightarrow y=0, point(0, 0) y − in t erce pt : x = 0 ⟹ y = 0 , p o in t ( 0 , 0 ) x − i n t e r c e p t : y = 0 ⟹ 0 = x 2 ( 2 a − x ) ( x − a ) x-intercept: y=0\Longrightarrow 0={x^2(2a-x) \over (x-a)} x − in t erce pt : y = 0 ⟹ 0 = ( x − a ) x 2 ( 2 a − x ) x = 0 o r x = 2 a x=0\ or\ x=2a x = 0 or x = 2 a p o i n t ( 0 , 0 ) , p o i n t ( 2 a , 0 ) point(0, 0), point(2a, 0) p o in t ( 0 , 0 ) , p o in t ( 2 a , 0 ) 4. First derivative
Take derivative with respect to x of both sides of the equation and use the Chain rule
d d x ( y 2 ( x − a ) ) = d d x ( x 2 ( 2 a − x ) ) {d \over dx}(y^2(x-a))={d \over dx}(x^2(2a-x)) d x d ( y 2 ( x − a )) = d x d ( x 2 ( 2 a − x ))
2 y ( x − a ) d y d x + y 2 = 2 x ( 2 a − x ) − x 2 2y(x-a){dy \over dx}+y^2=2x(2a-x)-x^2 2 y ( x − a ) d x d y + y 2 = 2 x ( 2 a − x ) − x 2
d y d x = 2 x ( 2 a − x ) − x 2 − y 2 2 y ( 2 a − x ) {dy \over dx}={2x(2a-x)-x^2-y^2 \over 2y(2a-x)} d x d y = 2 y ( 2 a − x ) 2 x ( 2 a − x ) − x 2 − y 2 Thus the tangent at (2a, 0) is parallel to y-axis.
5. Tangents at the origin
The equations of the tangents to the curve at the origin is obtained by equating the lowest degree terms in x and y
in the given equation to zero
x y 2 − a y 2 = 2 a x 2 − x 3 xy^2-ay^2=2ax^2-x^3 x y 2 − a y 2 = 2 a x 2 − x 3
− a y 2 = 2 a x 2 -ay^2=2ax^2 − a y 2 = 2 a x 2
2 x 2 = − y 2 2x^2=-y^2 2 x 2 = − y 2 No tangent at the origin.
6. Asymptote(s)
y 2 ( x − a ) = 2 a x 2 − x 3 y^2(x-a)=2ax^2-x^3 y 2 ( x − a ) = 2 a x 2 − x 3 Asymptote parallel to y-axis
C o e f f i c i e n t o f y 2 i s ( x − a ) . Coefficient\ of\ y^2\ is\ (x-a). C oe ff i c i e n t o f y 2 i s ( x − a ) .
x − a = 0 ⟹ x = a x-a=0\implies x=a x − a = 0 ⟹ x = a x=a is the a symptote parallel to y-axis.
There is no horizontal asymptote.
There is no slant (oblique) asymptote.
7. Regions where no part of the curve lies.
y 2 = x 2 ( 2 a − x ) ( x − a ) y^2={x^2(2a-x) \over (x-a)} y 2 = ( x − a ) x 2 ( 2 a − x )
y = ± x 2 ( 2 a − x ) ( x − a ) y=\pm \sqrt{x^2(2a-x) \over (x-a)} y = ± ( x − a ) x 2 ( 2 a − x )
x 2 ( 2 a − x ) ( x − a ) ≥ 0 ⟹ a < x ≤ 2 a {x^2(2a-x) \over (x-a)}\geq0 \Longrightarrow a< x \leq 2a ( x − a ) x 2 ( 2 a − x ) ≥ 0 ⟹ a < x ≤ 2 a Note that x=0 is the point on the curve but no branches passes through (0, 0), such a point is called as isolated point.
Comments