limh→0(2(−3+h)2−18h)=limh→0(2(9−6h+h2)−18h)=\lim\limits_{h\to 0}(2(-3+h)^2-18h)= \lim\limits_{h\to 0}(2(9-6h+h^2)-18h)=h→0lim(2(−3+h)2−18h)=h→0lim(2(9−6h+h2)−18h)=
=limh→0(18−12h+2h2−18h)=limh→0(18−30h+2h2)==\lim\limits_{h\to 0}(18-12h+2h^2-18h) =\lim\limits_{h\to 0}(18-30h+2h^2)==h→0lim(18−12h+2h2−18h)=h→0lim(18−30h+2h2)= {30h→0ash→0and2h2→0ash→0,hence(18−30h+2h2)→18ash→0}=\{30h \to 0 \quad as\quad h\to 0 \quad and \quad 2h^2\to 0 \quad as\quad h\to 0,\quad \\hence \quad(18-30h+2h^2)\to 18\quad as\quad h\to 0\}={30h→0ash→0and2h2→0ash→0,hence(18−30h+2h2)→18ash→0}=
=18.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments