1 Find the angle between
A=2x+2j−k
A=2x+2j−k
and
B=6i−3j+2k
2 Determine the value of a so that
A=2i+aj+k
A=2i+aj+k
and
B=4i−2j−2k
B=4i−2j−2k
are perpendicular
3 Determine a unit vector perpendicular to the plane of
A=2i−6j−3k
A=2i−6j−3k
and
B=4i+3j−k
4 Find the work done in moving an object along a vector
r=3i+2j−5k
5 Given that
A=2i−j+3k
A=2i−j+3k
and
B=3i+2j−k
B=3i+2j−k
, find
A⋅B
6 If
A=2i−3j−k
A=2i−3j−k
and
B=i+4j−2k
B=i+4j−2k
, find
(A+B+×(A−B)
7 If
A=3i−j+2k
A=3i−j+2k
,
B=2i+j−k
B=2i+j−k
and
C=i−2j+2k
C=i−2j+2k
, find
(A×B)×C
8 Determine a unit vector perpendicular to the plane of
A=2i−6j−3k
A=2i−6j−3k
and
B=4i+3j−k
9 Evaluate
(2i−3j)⋅[(i+j−k)×(3i−k)]
10 If
A=i−2j−3k
A=i−2j−3k
,
B=2i+j−k
B=2i+j−k
and
C=i+3j−2k
C=i+3j−2k
Comments
Leave a comment