A rock is thrown horizontally from the top of a cliff 88 m high, with a horizontal speed of 25 m/s. with what velocity does the rock hit
"y(t)=h+0\\cdot t-\\dfrac{gt^2}{2}"
"v_y(t)=y'(t)=-gt"
The rock hits the land: "y(t_1)=0."
"t_1=\\sqrt{\\dfrac{2h}{g}}"
"v_y(t_1)=-g\\sqrt{\\dfrac{2h}{g}}=-\\sqrt{2gh}"
"|v(t_1)|=\\sqrt{v_{0x}^2+(-\\sqrt{2gh})^2}"
"=\\sqrt{v_{0x}^2+2gh}"
"=\\sqrt{(25m\/s)^2+2(9.81m\/s^2)(88m)}"
"=48.493m\/s"
"\\tan \\theta=-\\dfrac{\\sqrt{2gh}}{v_{0x}}=-\\dfrac{\\sqrt{2(9.81m\/s^2)(88m)}}{25m\/s}"
"\\approx-1.662"
"\\theta\\approx121\\degree"
The rock hits the land with the velocity 48.493 m/s at the angle "121\\degree" with respect to the ground.
Comments
Leave a comment