x(t)=v0xt
y(t)=h+0⋅t−2gt2
vy(t)=y′(t)=−gtThe rock hits the land: y(t1)=0.
h−2gt12=0,t1≥0
t1=g2h
vy(t1)=−gg2h=−2gh
∣v(t1)∣=v0x2+(−2gh)2
=v0x2+2gh
=(25m/s)2+2(9.81m/s2)(88m)
=48.493m/s
tanθ=−v0x2gh=−25m/s2(9.81m/s2)(88m)
≈−1.662
θ≈121°The rock hits the land with the velocity 48.493 m/s at the angle 121° with respect to the ground.
Comments