x ( t ) = v 0 x t x(t)=v_{0x}t x ( t ) = v 0 x t
y ( t ) = h + 0 ⋅ t − g t 2 2 y(t)=h+0\cdot t-\dfrac{gt^2}{2} y ( t ) = h + 0 ⋅ t − 2 g t 2
v y ( t ) = y ′ ( t ) = − g t v_y(t)=y'(t)=-gt v y ( t ) = y ′ ( t ) = − g t The rock hits the land: y ( t 1 ) = 0. y(t_1)=0. y ( t 1 ) = 0.
h − g t 1 2 2 = 0 , t 1 ≥ 0 h-\dfrac{gt_1^2}{2}=0, t_1\ge0 h − 2 g t 1 2 = 0 , t 1 ≥ 0
t 1 = 2 h g t_1=\sqrt{\dfrac{2h}{g}} t 1 = g 2 h
v y ( t 1 ) = − g 2 h g = − 2 g h v_y(t_1)=-g\sqrt{\dfrac{2h}{g}}=-\sqrt{2gh} v y ( t 1 ) = − g g 2 h = − 2 g h
∣ v ( t 1 ) ∣ = v 0 x 2 + ( − 2 g h ) 2 |v(t_1)|=\sqrt{v_{0x}^2+(-\sqrt{2gh})^2} ∣ v ( t 1 ) ∣ = v 0 x 2 + ( − 2 g h ) 2
= v 0 x 2 + 2 g h =\sqrt{v_{0x}^2+2gh} = v 0 x 2 + 2 g h
= ( 25 m / s ) 2 + 2 ( 9.81 m / s 2 ) ( 88 m ) =\sqrt{(25m/s)^2+2(9.81m/s^2)(88m)} = ( 25 m / s ) 2 + 2 ( 9.81 m / s 2 ) ( 88 m )
= 48.493 m / s =48.493m/s = 48.493 m / s
tan θ = − 2 g h v 0 x = − 2 ( 9.81 m / s 2 ) ( 88 m ) 25 m / s \tan \theta=-\dfrac{\sqrt{2gh}}{v_{0x}}=-\dfrac{\sqrt{2(9.81m/s^2)(88m)}}{25m/s} tan θ = − v 0 x 2 g h = − 25 m / s 2 ( 9.81 m / s 2 ) ( 88 m )
≈ − 1.662 \approx-1.662 ≈ − 1.662
θ ≈ 121 ° \theta\approx121\degree θ ≈ 121° The rock hits the land with the velocity 48.493 m/s at the angle 121 ° 121\degree 121° with respect to the ground.
Comments