Evaluate the following integrals. (Show your solution)
"1) \\intop 2x\u221ax" "dx"
2) "\\intop" "2\/\u221ax\u00b3" "dx"
We'll use the next basic integration formula:
"\\int x^ndx=\\frac{x^{n+1}}{n+1}+C."
So we have:
1)
"\\int 2x\\sqrt{x}dx=\\int2x^1x^{\\frac{1}{2}}dx=\\int2x^{\\frac{3}{2}}dx="
"=2\\frac{x^{\\frac{3}{2}+1}}{\\frac{3}{2}+1}+C=2\\frac{x^{\\frac{5}{2}}}{\\frac{5}{2}}+C=\\frac{4}{5}x^{{\\frac{5}{2}}}+C="
"=\\frac{4}{5}x^{2+\\frac{1}{2}}+C=\\frac{4}{5}x^2x^{\\frac{1}{2}}+C=\\frac{4}{5}x^2\\sqrt{x}+C."
2) "\\int\\frac{2}{\\sqrt{x^3}}dx=\\int\\frac{2}{x^{\\frac{3}{2}}}dx=\\int2x^{-\\frac{3}{2}}dx="
"=2\\frac{x^{-\\frac{3}{2}+1}}{-\\frac{3}{2}+1}+C=2\\frac{x^{-\\frac{1}{2}}}{-\\frac{1}{2}}+C=-\\frac{4}{x^{\\frac{1}{2}}}+C=-\\frac{4}{\\sqrt{x}}+C."
Answer: 1) "\\int 2x\\sqrt{x}dx=\\frac{4}{5}x^2\\sqrt{x}+C,"
2) "\\int\\frac{2}{\\sqrt{x^3}}dx=-\\frac{4}{\\sqrt{x}}+C."
Comments
Leave a comment