Question #348505

Two curves having an equation of x=2√y and y=2√x intersect each


other. Compute the area between the two curves.

1
Expert's answer
2022-06-07T04:53:15-0400

Let's rewrite the function x=2y.x=2\sqrt{y}.

x2=(2y)2,x0,y0;x^2=(2\sqrt{y})^2, x\geq 0, y\geq 0;

x2=4y,x0,y0;x^2=4y, x\geq 0, y\geq 0;

y=14x2,x0,y0.y=\frac{1}{4}x^2, x\geq 0, y\geq 0.


Let's find the interseptions of the curves:

14x2=2x,\frac{1}{4}x^2=2\sqrt{x},

(14x2)2=(2x)2,(\frac{1}{4}x^2)^2=(2\sqrt{x})^2,

116x4=4x,\frac{1}{16}x^4=4x,

x4=64x,x^4=64x,

x464x=0,x^4-64x=0,

x(x364)=0,x(x^3-64)=0,

x=0x=0 or x364=0,x^3-64=0,

x=0x=0 or x=4.x=4.




A=042xdx0414x2dx=A=\int_0^42\sqrt{x}dx-\int_0^4 \frac{1}{4}x^2dx=


=204xdx1404x2dx==2\int_0^4\sqrt{x}dx- \frac{1}{4}\int_0^4x^2dx=


=223xx0414x3304==2\cdot \frac{2}{3}x\sqrt{x} |_0^4-\frac{1}{4}\frac{x^3}{3}|_0^4=


=43441443304=323163=163=513.=\frac{4}{3}\cdot 4\sqrt{4}-\frac{1}{4}\cdot \frac{4^3}{3}|_0^4=\frac{32}{3}-\frac{16}{3}=\frac{16}{3}=5\frac{1}{3}.


Answer: 513.5\frac{1}{3}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS