Let's rewrite the function x=2y.
x2=(2y)2,x≥0,y≥0;
x2=4y,x≥0,y≥0;
y=41x2,x≥0,y≥0.
Let's find the interseptions of the curves:
41x2=2x,
(41x2)2=(2x)2,
161x4=4x,
x4=64x,
x4−64x=0,
x(x3−64)=0,
x=0 or x3−64=0,
x=0 or x=4.
A=∫042xdx−∫0441x2dx=
=2∫04xdx−41∫04x2dx=
=2⋅32xx∣04−413x3∣04=
=34⋅44−41⋅343∣04=332−316=316=531.
Answer: 531.
Comments