use the method of cylinders to determine the volume of the solid by rotating the region bounded by y=-x^2-10x+6 and y=2x+26 about the
a. line x=2 b. line x=-1 c. line x=-14
"x^2+12x+20=0"
"x_1=-10, x_2=-2"
a.
"=2\\pi[\\dfrac{x^4}{4}+\\dfrac{10x^3}{3}-2x^2-40x]\\begin{matrix}\n -2\\\\\n -10\n\\end{matrix}"
"=\\dfrac{4096\\pi}{3}({units}^3)"
b.
"=2\\pi[\\dfrac{x^4}{4}+\\dfrac{13x^3}{3}+16x^2+20x]\\begin{matrix}\n -2\\\\\n -10\n\\end{matrix}"
"=\\dfrac{2560\\pi}{3}({units}^3)"
c.
"=2\\pi[\\dfrac{x^4}{4}-\\dfrac{26x^3}{3}-94x^2-280x]\\begin{matrix}\n -2\\\\\n -10\n\\end{matrix}"
"=\\dfrac{4096\\pi}{3}({units}^3)"
Comments
Leave a comment