Question #343906

use the method of disks to determine the volume of the solid by rotating the region bounded by y=10-2x,y=x+1 and y=7 about the

a. line x=8 b. line x=1 c. line x=-4


1
Expert's answer
2022-05-24T11:40:31-0400
y=102x=>x=0.5y+5y=10-2x=>x=-0.5y+5

y=x+1=>x=y1y=x+1=>x=y-1


y1=0.5y+5y-1=-0.5y+5

y=4y=4

a.


V=47π(8+0.5y5)2dyV=\displaystyle\int_{4}^{7}\pi(8+0.5y-5)^2dy47π(8y+1)2dy-\displaystyle\int_{4}^{7}\pi(8-y+1)^2dy

=π[0.25y3+10.5y272y]74==\pi[-0.25y^3+10.5y^2-72y]\begin{matrix} 7\\ 4 \end{matrix}=

=243π4(units3)=\dfrac{243\pi}{4}({units}^3)

b.


V=47π(y11)2dyV=\displaystyle\int_{4}^{7}\pi(y-1-1)^2dy47π(0.5y+54)2dy-\displaystyle\int_{4}^{7}\pi(-0.5y+54)^2dy

=π[0.25y312y]74==\pi[0.25y^3-12y]\begin{matrix} 7\\ 4 \end{matrix}=

=135π4(units3)=\dfrac{135\pi}{4}({units}^3)

c.


V=47π(y1+4)2dyV=\displaystyle\int_{4}^{7}\pi(y-1+4)^2dy47π(0.5y+51)2dy-\displaystyle\int_{4}^{7}\pi(-0.5y+5-1)^2dy

=π[0.25y3+7.5y272y]74==\pi[0.25y^3+7.5y^2-72y]\begin{matrix} 7\\ 4 \end{matrix}=

=405π4(units3)=\dfrac{405\pi}{4}({units}^3)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS