Answer to Question #336153 in Calculus for Quân Jason

Question #336153

Find the area of the region bounded by y= 11x2/16, y=x2, y=3-2x, satisfying x≤0





.


1
Expert's answer
2022-05-02T16:00:06-0400

Schematically plot region



Area A = A1 + A2


Parts

A1=x1x211/16x232xdydxA1 = \int_{x1}^{x2}\int_{11/16x^2}^{3-2x}dydx

A2=x2011/16x2x2dydxA2 = \int_{x2}^{0}\int_{11/16x^2}^{x^2}dydx


Integration boundaries

x1:32x1=11/16x12,x10x1=4x1:\\ 3 - 2x_1 = 11/16x_1^2, x_1 \le 0\\ x_1 = -4


x2:32x2=x22,x20x2=3x2:\\ 3-2x_2 = x_2^2, x_2 \le 0\\ x_2 = -3


Area parts

A1=4311/16x232xdydx=4332x11/16x2dx=[3xx211/48x3]43=3(3+4)(916)11/48(27+64)1.5208A1 = \int_{-4}^{-3}\int_{11/16x^2}^{3-2x}dydx\\ = \int_{-4}^{-3} 3 - 2x - 11/16x^2dx\\ = \Big[ 3x - x^2 - 11/48x^3 \Big]_{-4}^{-3}\\ = 3*(-3 + 4) - (9 - 16) - 11/48*(-27 + 64) \approx 1.5208


A2=3011/16x2x2dydx=30x211/16x2dx=305/16x2dx=5/48x330=5/48(0+27)=2.8125A2 = \int_{-3}^{0}\int_{11/16x^2}^{x^2}dydx\\ = \int_{-3}^{0} x^2 - 11/16x^2dx=\int_{-3}^{0} 5/16x^2dx\\ = 5/48x^3\Big|_{-3}^{0}\\ = 5/48*(0 + 27) = 2.8125


Area

A=A1+A21.5208+2.8125=4.3333A = A1 + A2 \approx1.5208 + 2.8125 = 4.3333



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment