Answer to Question #323348 in Calculus for Ayeeshaaaa

Question #323348

  lim x + 2x2 − x3/ 3 − x2



1
Expert's answer
2022-04-06T15:44:20-0400
limx(x+2x2x33x2)Divide by highest denominator power: 1x+2x3x21=limx(1x+2x3x21)limxa[f(x)g(x)]=limxaff(x)limxagg(x),limxag(x)0With the exception of indeterminate form=limx(1x+2x)limx(3x21)limx(1x+2x)=limx(3x21)=1=1=\lim _{x \rightarrow \infty}\left(\frac{x+2 x^{2}-x^{3}}{3-x^{2}}\right)\\ \text{Divide by highest denominator power: } \frac{\frac{1}{x}+2-x}{\frac{3}{x^{2}}-1}\\[2mm] \begin{aligned} &=\lim _{x \rightarrow \infty}\left(\frac{\frac{1}{x}+2-x}{\frac{3}{x^{2}}-1}\right) \\ &\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a f} f(x)}{\lim _{x \rightarrow a g} g(x)}, \quad \lim _{x \rightarrow a g}(x) \neq 0 \end{aligned} \\[2mm] \textit{With the exception of indeterminate form}\\[2mm] =\frac{\lim _{x \rightarrow \infty}\left(\frac{1}{x}+2-x\right)}{\lim _{x \rightarrow \infty}\left(\frac{3}{x^{2}}-1\right)}\\ \lim _{x \rightarrow \infty}\left(\frac{1}{x}+2-x\right)=-\infty\\ \lim _{x \rightarrow \infty}\left(\frac{3}{x^{2}}-1\right)=-1\\ =\frac{-\infty}{-1}\\ =\infty


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment