Question #322858

What is the Jacobian matrix J(r, θ) for the polar coordinate transformation, given that x=rcos⁡θ and y=rsin⁡θ.



Select one:



A. cos⁡θ-rsin⁡θ-sin⁡θrcos⁡θ




B. -rcos⁡θsin⁡θsin⁡θ-rcos⁡θ




C. cos⁡θ-rsin⁡θsin⁡θ-rcos⁡θ




D. cos⁡θrsin⁡θsin⁡θrcos⁡θ


1
Expert's answer
2022-04-06T09:31:57-0400

J=[r(rcosθ)θ(rcosθ)r(rsinθ)θ(rsinθ)]=[cosθrsinθsinθrcosθ]J=\left[ \begin{matrix} \frac{\partial}{\partial r}\left( r\cos \theta \right)& \frac{\partial}{\partial \theta}\left( r\cos \theta \right)\\ \frac{\partial}{\partial r}\left( r\sin \theta \right)& \frac{\partial}{\partial \theta}\left( r\sin \theta \right)\\\end{matrix} \right] =\left[ \begin{matrix} \cos \theta& -r\sin \theta\\ \sin \theta& r\cos \theta\\\end{matrix} \right] \\

Only one '-' sign, no correct variant


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS