Find y' if x^y^2=y^x^2
xy2=yx2y2lnx=x2lnyd(y2lnx)=d(x2lny)2ylnxdy+y2xdx=2xlnydx+x2ydy(2ylnx−x2y)dy=(2xlny−y2x)dxdydx=2xlny−y2x2ylnx−x2yx^{y^2}=y^{x^2}\\y^2\ln x=x^2\ln y\\d\left( y^2\ln x \right) =d\left( x^2\ln y \right) \\2y\ln xdy+\frac{y^2}{x}dx=2x\ln ydx+\frac{x^2}{y}dy\\\left( 2y\ln x-\frac{x^2}{y} \right) dy=\left( 2x\ln y-\frac{y^2}{x} \right) dx\\\frac{dy}{dx}=\frac{2x\ln y-\frac{y^2}{x}}{2y\ln x-\frac{x^2}{y}}xy2=yx2y2lnx=x2lnyd(y2lnx)=d(x2lny)2ylnxdy+xy2dx=2xlnydx+yx2dy(2ylnx−yx2)dy=(2xlny−xy2)dxdxdy=2ylnx−yx22xlny−xy2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments