expand (1+x)^-2 using binomial theorem
Binomial theorem
(1+x)n=1+nx+n(n−1)2!x2+...(1+x)^{n}=1+nx+\frac{n(n-1)}{2!}x^2+...(1+x)n=1+nx+2!n(n−1)x2+...
Here n=−2n=-2n=−2
(1+x)−2=1−2x+−2(−2−1)2!x2+...(1+x)^{-2}=1-2x+\frac{-2(-2-1)}{2!}x^2+...(1+x)−2=1−2x+2!−2(−2−1)x2+...
=1−2x+62!x2+...=1-2x+\frac{6}{2!}x^2+...=1−2x+2!6x2+...
=1−2x+62x2+...=1-2x+\frac{6}{2}x^2+...=1−2x+26x2+...
=1−2x+3x2+....=1-2x+3x^2+....=1−2x+3x2+....
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments