Answer to Question #295839 in Calculus for 223

Question #295839

Find the most general antiderivatives f(x)= -8(e^x)-6(sec^3)(x), where -pi/2 <x< pi/2

1
Expert's answer
2022-02-10T14:56:26-0500




We want to evaluate


f(x) dx=[8ex6sec3x] dx=8ex dx6sec3x dx\displaystyle \int f(x)\ dx= \int[-8e^x-6\sec^3x]\ dx=-8\int e^x\ dx-6\int\sec^3x\ dx

but,

ex dx=ex\displaystyle \int e^x\ dx=e^x


and using integration by parts;


sec3x dx=sec2xsecx dx=secxtanxsecxtan2x dx\displaystyle \int\sec^3x\ dx=\int\sec^2x\sec x\ dx=\sec x\tan x-\int\sec x\tan^2x\ dx

=secxtanxsecx(sec2x1) dx\displaystyle =\sec x\tan x-\int\sec x(\sec^2 x-1)\ dx

=secxtanxsec3x dxsecx dx\displaystyle =\sec x\tan x-\int \sec^3 x\ dx-\int \sec x\ dx

2sec3x dx=secxtanxsecx dx=secxtanxlntanx+secx\displaystyle \Rightarrow 2\int\sec^3 x\ dx=\sec x\tan x-\int\sec x\ dx=\sec x\tan x-\ln|\tan x+\sec x|

sec3x dx=secxtanxsecx dx=12secxtanx12lntanx+secx\displaystyle \Rightarrow \int\sec^3 x\ dx=\sec x\tan x-\int\sec x\ dx=\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln|\tan x+\sec x|

Thus,

f(x) dx=[8ex6sec3x] dx=8ex dx6sec3x dx\displaystyle \int f(x)\ dx= \int[-8e^x-6\sec^3x]\ dx=-8\int e^x\ dx-6\int\sec^3x\ dx

=8ex6[12secxtanx12lntanx+secx]+c\displaystyle =-8e^x-6\left[\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln|\tan x+\sec x|\right]+c, where c is an arbitrary constant.

=8ex3secxtanx3lntanx+secx+c, for π2<x<π2\displaystyle =-8e^x-3\sec x\tan x-3\ln|\tan x+\sec x|+c, \text{ for }-\frac{\pi}{2}<x<\frac{\pi}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment