Find the most general antiderivatives f(x)= -8(e^x)-6(sec^3)(x), where -pi/2 <x< pi/2
We want to evaluate
"\\displaystyle\n\\int f(x)\\ dx= \\int[-8e^x-6\\sec^3x]\\ dx=-8\\int e^x\\ dx-6\\int\\sec^3x\\ dx"
but,
"\\displaystyle\n\\int e^x\\ dx=e^x"
and using integration by parts;
"\\displaystyle\n\\int\\sec^3x\\ dx=\\int\\sec^2x\\sec x\\ dx=\\sec x\\tan x-\\int\\sec x\\tan^2x\\ dx"
"\\displaystyle\n=\\sec x\\tan x-\\int\\sec x(\\sec^2 x-1)\\ dx"
"\\displaystyle\n=\\sec x\\tan x-\\int \\sec^3 x\\ dx-\\int \\sec x\\ dx"
"\\displaystyle\n\\Rightarrow\n2\\int\\sec^3 x\\ dx=\\sec x\\tan x-\\int\\sec x\\ dx=\\sec x\\tan x-\\ln|\\tan x+\\sec x|"
"\\displaystyle\n\\Rightarrow\n\\int\\sec^3 x\\ dx=\\sec x\\tan x-\\int\\sec x\\ dx=\\frac{1}{2}\\sec x\\tan x-\\frac{1}{2}\\ln|\\tan x+\\sec x|"
Thus,
"\\displaystyle\n\\int f(x)\\ dx= \\int[-8e^x-6\\sec^3x]\\ dx=-8\\int e^x\\ dx-6\\int\\sec^3x\\ dx"
"\\displaystyle\n=-8e^x-6\\left[\\frac{1}{2}\\sec x\\tan x-\\frac{1}{2}\\ln|\\tan x+\\sec x|\\right]+c", where c is an arbitrary constant.
"\\displaystyle\n=-8e^x-3\\sec x\\tan x-3\\ln|\\tan x+\\sec x|+c, \\text{ for }-\\frac{\\pi}{2}<x<\\frac{\\pi}{2}"
Comments
Leave a comment