We want to evaluate
∫f(x) dx=∫[−8ex−6sec3x] dx=−8∫ex dx−6∫sec3x dx
but,
∫ex dx=ex
and using integration by parts;
∫sec3x dx=∫sec2xsecx dx=secxtanx−∫secxtan2x dx
=secxtanx−∫secx(sec2x−1) dx
=secxtanx−∫sec3x dx−∫secx dx
⇒2∫sec3x dx=secxtanx−∫secx dx=secxtanx−ln∣tanx+secx∣
⇒∫sec3x dx=secxtanx−∫secx dx=21secxtanx−21ln∣tanx+secx∣
Thus,
∫f(x) dx=∫[−8ex−6sec3x] dx=−8∫ex dx−6∫sec3x dx
=−8ex−6[21secxtanx−21ln∣tanx+secx∣]+c, where c is an arbitrary constant.
=−8ex−3secxtanx−3ln∣tanx+secx∣+c, for −2π<x<2π
Comments
Leave a comment