Evaluate I = Z C x^ 2 ydx + (x-2y)dy over the part of parabola y=x^2 from (0,0) to (1,1)
"x(t)=t,y(t)=t^2,0\\le t \\le 1"
"I=\\int^1_0[t^4\\frac{dx}{dt}+(t-2t^2)\\frac{dy}{dt}] dt=\\int^1_0[t^4+2t (t-2t^2)]dt="
"=(t^5\/5+2t^3\/3-t^4)|^1_0=1\/5+2\/3-1=-2\/15"
Comments
Leave a comment