Question #281190

Find the volume in the first octant bounded by x+y+z=9, and the inside cylinder 3y=27-x^3



1
Expert's answer
2021-12-21T02:08:04-0500

ANSWER : Volume= 558970+4379.84+6.93=86.77\frac { 5589 }{ 70 } +4\sqrt { 3 } \quad \approx 79.84+6.93=86.77

EXPLANATION

Denote by WW the region in the first octant bounded by x+y+z=9x+y+z=9 and the inside cylinder 3y=27x333y=27-\frac { { x }^{ 3 } }{ 3 } .

Volume(W)=D (9xy)dydxVolume (W)=\iint _{ D }^{ \ }{ (9-x-y)dydx } , where D=D1D2D={ D }_{ 1 }\cup { D }_{ 2 }\quad, D1= {(x,y):0x3,0y9x} ,D2= {(x,y):3x3,0y9x33}.{ D }_{ 1 }=\ \left\{ \left( x,y \right) :0\le x\le \sqrt { 3 } ,0\le y\le 9-x \right\} \ ,\\{ D }_{ 2 }=\ \left\{ \left( x,y \right) :\sqrt { 3 } \le x\le 3,\quad 0\le y\le 9-\frac { { x }^{ 3 } }{ 3 } \right\}.

D1 (9xy)dydx =03(09x( 9xy)dy)dx=\iint _{ { D }_{ 1 } }^{ \ }{ (9-x-y)dydx\ =\int _{ 0 }^{ \sqrt { 3 } }{ \left( \int _{ 0 }^{ 9-x }{ (\ 9-x } -y)dy \right) dx\quad = } } =03[(9x)2(9x)22]dx=03[(9x)22]dx= [(9x)36]03==\int _{ 0 }^{ \sqrt { 3 } }{ \left[ { (9-x) }^{ 2 }-\frac { { (9-x) }^{ 2 } }{ 2 } \right] dx=\int _{ 0 }^{ \sqrt { 3 } }{ \left[ \frac { { (9-x) }^{ 2 } }{ 2 } \right] dx=\ { \left[ -\frac { { (9-x) }^{ 3 } }{ 6 } \right] }_{ 0 }^{ \sqrt { 3 } } } =\quad } =[(93)36]+936=\left[ -\frac { { (9-\sqrt { 3 } ) }^{ 3 } }{ 6 } \right] +\frac { { 9 }^{ 3 } }{ 6 } =413272=41\sqrt { 3 } -\frac { 27 }{ 2 } =41394570=41\sqrt { 3 } -\frac { 945 }{ 70 } ,

D2 (9xy)dydx = \iint _{ { D }_{ 2 } }^{ \ }{ (9-x-y)dydx\ =\ } 33(09x33( 9xy)dy)dx = 33[(9x)(9x33)(9x33)22]dx =\int _{ \sqrt { 3 } }^{ 3 }{ \left( \int _{ 0 }^{ 9-\frac { { x }^{ 3 } }{ 3 } }{ (\ 9-x } -y)dy \right) dx\ = } \ \int _{ \sqrt { 3 } }^{ 3 }{ \left[ (9-x)\left( 9-\frac { { x }^{ 3 } }{ 3 } \right) -\frac { { \left( 9-\frac { { x }^{ 3 } }{ 3 } \right) }^{ 2 } }{ 2 } \right] } dx\ =

=33[819x3x3+x4312(816x3+x69)]dx==\int _{ \sqrt { 3 } }^{ 3 }{ \left[ 81-9x-3{ x }^{ 3 }+\frac { { x }^{ 4 } }{ 3 } -\frac { 1 }{ 2 } \left( 81-6{ x }^{ 3 }+\frac { { x }^{ 6 } }{ 9 } \right) \right] } dx= [812x9x22+x515x7126]33={ \left[ \frac { 81 }{ 2 } x-\frac { { 9x }^{ 2 } }{ 2 } +\frac { { x }^{ 5 } }{ 15 } -\frac { { x }^{ 7 } }{ 126 } \right] }_{ \sqrt { 3 } }^{ 3 }= =(243812+243152187126)(8123272+3353314)==\left( \frac { 243-81 }{ 2 } +\frac { 243 }{ 15 } -\frac { 2187 }{ 126 } \right) -\left( \frac { 81 }{ 2 } \sqrt { 3 } -\frac { 27 }{ 2 } +\frac { 3\sqrt { 3 } }{ \quad 5 } -\frac { 3\sqrt { 3 } }{ \quad 14 } \right) =  326735 1431353.\ \frac { 3267 }{ 35 } \ -\frac { 1431 }{ 35 } \sqrt { 3 } .

Therefore , Volume(W)=D (9xy)dydx=Volume (W)=\iint _{ D }^{ \ }{ (9-x-y)dydx } =

D1 (9xy)dydx+D1 (9xy)dydx =\iint _{ { D }_{ 1 } }^{ \ }{ (9-x-y)dydx+\iint _{ { D }_{ 1 } }^{ \ }{ (9-x-y)dydx \ = } }

= 558970+4379.84+6.93=86.77=\ \frac { 5589 }{ 70 } +4\sqrt { 3 } \quad \approx 79.84+6.93=86.77\quad \quad


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS