ANSWER : Volume= 705589+43≈79.84+6.93=86.77
EXPLANATION
Denote by W the region in the first octant bounded by x+y+z=9 and the inside cylinder 3y=27−3x3 .
Volume(W)=∬D (9−x−y)dydx , where D=D1∪D2, D1= {(x,y):0≤x≤3,0≤y≤9−x} ,D2= {(x,y):3≤x≤3,0≤y≤9−3x3}.

∬D1 (9−x−y)dydx =∫03(∫09−x( 9−x−y)dy)dx= =∫03[(9−x)2−2(9−x)2]dx=∫03[2(9−x)2]dx= [−6(9−x)3]03= =[−6(9−3)3]+693 =413−227 =413−70945 ,
∬D2 (9−x−y)dydx = ∫33(∫09−3x3( 9−x−y)dy)dx = ∫33[(9−x)(9−3x3)−2(9−3x3)2]dx =
=∫33[81−9x−3x3+3x4−21(81−6x3+9x6)]dx= [281x−29x2+15x5−126x7]33= =(2243−81+15243−1262187)−(2813−227+533−1433)= 353267 −3514313.
Therefore , Volume(W)=∬D (9−x−y)dydx=
∬D1 (9−x−y)dydx+∬D1 (9−x−y)dydx =
= 705589+43≈79.84+6.93=86.77
Comments