Determine the open intervals on which the graph of f(x)= (x²)/(x²+1) is concave upward or concave downward
Domain: "(-\\infin, \\infin)"
"f''(x)=\\dfrac{2((x^2+1)^2-2x(2x)(x^2+1))}{(x^2+1)^4}"
"=\\dfrac{2(x^2+1-4x^2)}{(x^2+1)^3}=\\dfrac{2(1-3x^2)}{(x^2+1)^3}"
Find the point(s) of inflection
"1-3x^2=0"
"x_1=-\\dfrac{\\sqrt{3}}{3}, x_2=\\dfrac{\\sqrt{3}}{3}"
If "x<-\\dfrac{\\sqrt{3}}{3}, f''(x)<0, f(x)" is concave downward.
If "-\\dfrac{\\sqrt{3}}{3}<x<\\dfrac{\\sqrt{3}}{3}, f''(x)>0, f(x)" is concave upward.
If "x>\\dfrac{\\sqrt{3}}{3}, f''(x)<0, f(x)" is concave downward.
"f(x)" is concave upward on "(-\\dfrac{\\sqrt{3}}{3}, \\dfrac{\\sqrt{3}}{3})."
"f(x)" is concave downward on "(-\\infin,-\\dfrac{\\sqrt{3}}{3})\\cup ( \\dfrac{\\sqrt{3}}{3}, \\infin)."
Comments
Leave a comment