f ( x ) = x 2 x 2 + 1 f(x)=\dfrac{x^2}{x^2+1} f ( x ) = x 2 + 1 x 2 Domain: ( − ∞ , ∞ ) (-\infin, \infin) ( − ∞ , ∞ )
f ′ ( x ) = 2 x ( x 2 + 1 ) − 2 x ( x 2 ) ( x 2 + 1 ) 2 = 2 x ( x 2 + 1 ) 2 f'(x)=\dfrac{2x(x^2+1)-2x(x^2)}{(x^2+1)^2}=\dfrac{2x}{(x^2+1)^2} f ′ ( x ) = ( x 2 + 1 ) 2 2 x ( x 2 + 1 ) − 2 x ( x 2 ) = ( x 2 + 1 ) 2 2 x
f ′ ′ ( x ) = 2 ( ( x 2 + 1 ) 2 − 2 x ( 2 x ) ( x 2 + 1 ) ) ( x 2 + 1 ) 4 f''(x)=\dfrac{2((x^2+1)^2-2x(2x)(x^2+1))}{(x^2+1)^4} f ′′ ( x ) = ( x 2 + 1 ) 4 2 (( x 2 + 1 ) 2 − 2 x ( 2 x ) ( x 2 + 1 ))
= 2 ( x 2 + 1 − 4 x 2 ) ( x 2 + 1 ) 3 = 2 ( 1 − 3 x 2 ) ( x 2 + 1 ) 3 =\dfrac{2(x^2+1-4x^2)}{(x^2+1)^3}=\dfrac{2(1-3x^2)}{(x^2+1)^3} = ( x 2 + 1 ) 3 2 ( x 2 + 1 − 4 x 2 ) = ( x 2 + 1 ) 3 2 ( 1 − 3 x 2 ) Find the point(s) of inflection
f ′ ′ ( x ) = 0 = > 2 ( 1 − 3 x 2 ) ( x 2 + 1 ) 3 = 0 f''(x)=0=>\dfrac{2(1-3x^2)}{(x^2+1)^3}=0 f ′′ ( x ) = 0 => ( x 2 + 1 ) 3 2 ( 1 − 3 x 2 ) = 0
1 − 3 x 2 = 0 1-3x^2=0 1 − 3 x 2 = 0
x 1 = − 3 3 , x 2 = 3 3 x_1=-\dfrac{\sqrt{3}}{3}, x_2=\dfrac{\sqrt{3}}{3} x 1 = − 3 3 , x 2 = 3 3 If x < − 3 3 , f ′ ′ ( x ) < 0 , f ( x ) x<-\dfrac{\sqrt{3}}{3}, f''(x)<0, f(x) x < − 3 3 , f ′′ ( x ) < 0 , f ( x ) is concave downward.
If − 3 3 < x < 3 3 , f ′ ′ ( x ) > 0 , f ( x ) -\dfrac{\sqrt{3}}{3}<x<\dfrac{\sqrt{3}}{3}, f''(x)>0, f(x) − 3 3 < x < 3 3 , f ′′ ( x ) > 0 , f ( x ) is concave upward.
If x > 3 3 , f ′ ′ ( x ) < 0 , f ( x ) x>\dfrac{\sqrt{3}}{3}, f''(x)<0, f(x) x > 3 3 , f ′′ ( x ) < 0 , f ( x ) is concave downward.
f ( x ) f(x) f ( x ) is concave upward on ( − 3 3 , 3 3 ) . (-\dfrac{\sqrt{3}}{3}, \dfrac{\sqrt{3}}{3}). ( − 3 3 , 3 3 ) .
f ( x ) f(x) f ( x ) is concave downward on ( − ∞ , − 3 3 ) ∪ ( 3 3 , ∞ ) . (-\infin,-\dfrac{\sqrt{3}}{3})\cup ( \dfrac{\sqrt{3}}{3}, \infin). ( − ∞ , − 3 3 ) ∪ ( 3 3 , ∞ ) .
Comments