Question #273960

Pebbles are poured out of a tube at one cubic meter per second. It forms a pile which has the shape of a cone. The height of the cone is equal to the radius of circular base. How fast is the pile of pebbles rising when it is 2 meters high


1
Expert's answer
2021-12-01T17:51:59-0500

Let V = volume of pebble in pile at a time t


Given dvdt=1m3/sGiven\ \frac{dv}{dt}=1m^3/s


Find dhdt,when h=2mFind \ \frac{dh}{dt}, when \ h=2m


V=13πr2hV=\frac{1}{3}\pi r^2h


Diameter = height

2r = h

r=h2r=\frac{h}{2}


V=13π(h2)2hV=\frac{1}{3}\pi (\frac{h}{2})^2h


V=112πh3V=\frac{1}{12}\pi h^3


dvdt=112π(3h2.dhdt)\frac{dv}{dt}=\frac{1}{12\pi}(3h^2.\frac{dh}{dt})


dvdt=312πh2dhdt\frac{dv}{dt}=\frac{3}{12}\pi h^2 \frac{dh}{dt}


because dvdt=1\frac{dv}{dt}=1


312πh2dhdt=1\frac{3}{12}\pi h^2 \frac{dh}{dt}=1


dhdt=123πh2\frac{dh}{dt}=\frac{12}{3\pi h^2 }


dhdth=2=123π(2)2\frac{dh}{dt}|_{h=2}=\frac{12}{3\pi (2)^2 }


=0.3183m/s=0.3183m/s

The pile pebbles rise at 0.3183m/s0.3183m/s




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS