Question #250810
10. A picture 40 cm high is placed on a wall with its base 30 cm above the level of the eye of an observer. If the observer is approaching the wall at the rate of 40 cm/sec, how fast is the measure of the angle subtended at the observer's eye by the picture changing when the observer is 1 m from the wall?
1
Expert's answer
2021-10-17T17:43:06-0400



Angle  θ=θ2θ1θ=cot1(x70)cot1(x30)dθdt=170dxdt1+x2702130dxdt1+x2302dθdt=dx/dt70(49004900+x2+dxdt30(900900+x2)dxdt=40x=100  cmdθdt=407049004900+10000+4030(900900+10000)dθdt=4(70014900)4(30010900)dθdt=2814912109=0.07782  rad/secAngle \; θ = θ_2-θ_1 \\ θ = cot^{-1}(\frac{x}{70}) -cot^{-1}(\frac{x}{30}) \\ \frac{dθ }{dt} = \frac{\frac{-1}{70} \frac{dx}{dt}}{1 + \frac{x^2}{70^2}} - \frac{\frac{-1}{30} \frac{dx}{dt}}{1 + \frac{x^2}{30^2}} \\ \frac{dθ }{dt} = \frac{-dx/dt}{70}(\frac{4900}{4900+x^2} + \frac{dx-dt}{30}(\frac{900}{900+x^2}) \\ \frac{dx}{dt} = -40 \\ x = 100 \;cm \\ \frac{dθ }{dt} = \frac{-40}{70}\frac{4900}{4900+10000} + \frac{-40}{30}(\frac{900}{900+10000}) \\ \frac{dθ }{dt} = 4(\frac{700}{14900}) -4(\frac{300}{10900}) \\ \frac{dθ }{dt} = \frac{28}{149} - \frac{12}{109} = 0.07782 \;rad/sec

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS