Solution:
(i) I = ∫ d x x ( ln x ) 2 I=\int \dfrac{dx}{x (\ln x)^2} I = ∫ x ( ln x ) 2 d x ...(i)
Put ln x = t \ln x=t ln x = t
⇒ 1 x d x = d t \Rightarrow\dfrac 1xdx=dt ⇒ x 1 d x = d t
So, (i) becomes,
I = ∫ d t ( t ) 2 = ∫ t − 2 d t = − t − 1 + C = − 1 t + C = − 1 ln x + C I=\int \dfrac{dt}{ (t)^2}
\\=\int t^{-2}dt
\\=-t^{-1}+C
\\=-\dfrac 1t+C
\\=-\dfrac 1{\ln x}+C I = ∫ ( t ) 2 d t = ∫ t − 2 d t = − t − 1 + C = − t 1 + C = − ln x 1 + C
(ii) I = ∫ x x + 1 d x I=\int \dfrac{x}{\sqrt{x+1}}dx I = ∫ x + 1 x d x ...(ii)
Put x + 1 = t x+1=t x + 1 = t
⇒ d x = d t \Rightarrow dx=dt ⇒ d x = d t
So, (ii) becomes,
I = ∫ t − 1 t d t = ∫ ( t t − 1 t ) d t = ∫ ( t 1 / 2 − t − 1 / 2 ) d t = t 3 / 2 3 / 2 − t 1 / 2 1 / 2 + C = 2 3 ( x + 1 ) 3 / 2 − 2 ( x + 1 ) 1 / 2 + C I=\int \dfrac{t-1}{\sqrt t}dt
\\=\int (\dfrac{t}{\sqrt t}-\dfrac{1}{\sqrt t})dt
\\=\int( t^{1/2}-t^{-1/2})dt
\\=\dfrac{t^{3/2}}{3/2}-\dfrac{t^{1/2}}{1/2}+C
\\=\dfrac 23(x+1)^{3/2}-2(x+1)^{1/2}+C I = ∫ t t − 1 d t = ∫ ( t t − t 1 ) d t = ∫ ( t 1/2 − t − 1/2 ) d t = 3/2 t 3/2 − 1/2 t 1/2 + C = 3 2 ( x + 1 ) 3/2 − 2 ( x + 1 ) 1/2 + C
(iii) I = ∫ x ( x 2 + 3 ) 4 d x I=\int \dfrac {x}{(x^2+3)^4}dx I = ∫ ( x 2 + 3 ) 4 x d x ...(iii)
Put x 2 + 3 = t x^2+3=t x 2 + 3 = t
⇒ 2 x d x = d t ⇒ x d x = d t 2 \Rightarrow 2xdx=dt
\\\Rightarrow xdx=\dfrac{dt}2 ⇒ 2 x d x = d t ⇒ x d x = 2 d t
So, (iii) becomes,
I = 1 2 ∫ d t ( t ) 4 = 1 2 ∫ t − 4 d t = 1 2 ( t − 3 − 3 ) + C = − 1 6 ( x 2 + 3 ) 3 + C I=\dfrac 12\int \dfrac {dt}{(t)^4}
\\=\dfrac 12\int t^{-4}{dt}
\\=\dfrac 12(\dfrac{t^{-3}}{-3})+C
\\=-\dfrac 1{6(x^2+3)^3}+C I = 2 1 ∫ ( t ) 4 d t = 2 1 ∫ t − 4 d t = 2 1 ( − 3 t − 3 ) + C = − 6 ( x 2 + 3 ) 3 1 + C
(iv) I = ∫ cos 2 x sin 3 x d x I=\int \cos2x\sin 3x\ dx I = ∫ cos 2 x sin 3 x d x
= 1 2 ∫ ( 2 cos 2 x sin 3 x ) d x = 1 2 ∫ ( sin ( 2 x + 3 x ) − sin ( 2 x − 3 x ) ) d x = 1 2 ∫ ( sin ( 5 x ) − sin ( − x ) ) d x = 1 2 ∫ ( sin ( 5 x ) + sin ( x ) ) d x = 1 2 ( − cos ( 5 x ) 5 − cos x ) + C =\dfrac12\int (2 \cos2x\sin 3x)dx
\\=\dfrac12\int (\sin(2x+3x)-\sin(2x-3x))dx
\\=\dfrac12\int (\sin(5x)-\sin(-x))dx
\\=\dfrac12\int (\sin(5x)+\sin(x))dx
\\=\dfrac12 (-\dfrac{\cos(5x)}5-\cos x)+C = 2 1 ∫ ( 2 cos 2 x sin 3 x ) d x = 2 1 ∫ ( sin ( 2 x + 3 x ) − sin ( 2 x − 3 x )) d x = 2 1 ∫ ( sin ( 5 x ) − sin ( − x )) d x = 2 1 ∫ ( sin ( 5 x ) + sin ( x )) d x = 2 1 ( − 5 cos ( 5 x ) − cos x ) + C
Comments