Solution:
(i) I=∫x(lnx)2dx ...(i)
Put lnx=t
⇒x1dx=dt
So, (i) becomes,
I=∫(t)2dt=∫t−2dt=−t−1+C=−t1+C=−lnx1+C
(ii) I=∫x+1xdx ...(ii)
Put x+1=t
⇒dx=dt
So, (ii) becomes,
I=∫tt−1dt=∫(tt−t1)dt=∫(t1/2−t−1/2)dt=3/2t3/2−1/2t1/2+C=32(x+1)3/2−2(x+1)1/2+C
(iii) I=∫(x2+3)4xdx ...(iii)
Put x2+3=t
⇒2xdx=dt⇒xdx=2dt
So, (iii) becomes,
I=21∫(t)4dt=21∫t−4dt=21(−3t−3)+C=−6(x2+3)31+C
(iv) I=∫cos2xsin3x dx
=21∫(2cos2xsin3x)dx=21∫(sin(2x+3x)−sin(2x−3x))dx=21∫(sin(5x)−sin(−x))dx=21∫(sin(5x)+sin(x))dx=21(−5cos(5x)−cosx)+C
Comments