Find (i) β« ππ₯ π₯(ln π₯)2
(ii) β« π₯βπ₯ + 1 ππ₯
(iii) β« π₯(π₯ 2 + 3) 4ππ₯ 1 0
(iv) cos2 π₯ sin3 π₯ ππ₯. Try π‘ = sin π₯Β
Solution:
(i) "I=\\int \\dfrac{dx}{x (\\ln x)^2}" ...(i)
Put "\\ln x=t"
"\\Rightarrow\\dfrac 1xdx=dt"
So, (i) becomes,
"I=\\int \\dfrac{dt}{ (t)^2}\n\\\\=\\int t^{-2}dt\n\\\\=-t^{-1}+C\n\\\\=-\\dfrac 1t+C\n\\\\=-\\dfrac 1{\\ln x}+C"
(ii) "I=\\int \\dfrac{x}{\\sqrt{x+1}}dx" ...(ii)
Put "x+1=t"
"\\Rightarrow dx=dt"
So, (ii) becomes,
"I=\\int \\dfrac{t-1}{\\sqrt t}dt\n\\\\=\\int (\\dfrac{t}{\\sqrt t}-\\dfrac{1}{\\sqrt t})dt\n\\\\=\\int( t^{1\/2}-t^{-1\/2})dt\n\\\\=\\dfrac{t^{3\/2}}{3\/2}-\\dfrac{t^{1\/2}}{1\/2}+C\n\\\\=\\dfrac 23(x+1)^{3\/2}-2(x+1)^{1\/2}+C"
(iii) "I=\\int \\dfrac {x}{(x^2+3)^4}dx" ...(iii)
Put "x^2+3=t"
"\\Rightarrow 2xdx=dt\n\\\\\\Rightarrow xdx=\\dfrac{dt}2"
So, (iii) becomes,
"I=\\dfrac 12\\int \\dfrac {dt}{(t)^4}\n\\\\=\\dfrac 12\\int t^{-4}{dt}\n\\\\=\\dfrac 12(\\dfrac{t^{-3}}{-3})+C\n\\\\=-\\dfrac 1{6(x^2+3)^3}+C"
(iv) "I=\\int \\cos2x\\sin 3x\\ dx"
"=\\dfrac12\\int (2 \\cos2x\\sin 3x)dx\n\\\\=\\dfrac12\\int (\\sin(2x+3x)-\\sin(2x-3x))dx\n\\\\=\\dfrac12\\int (\\sin(5x)-\\sin(-x))dx\n\\\\=\\dfrac12\\int (\\sin(5x)+\\sin(x))dx\n\\\\=\\dfrac12 (-\\dfrac{\\cos(5x)}5-\\cos x)+C"
Comments
Leave a comment