Question #250544

Find (i) ∫ 𝑑𝑥 𝑥(ln 𝑥)2

(ii) ∫ 𝑥√𝑥 + 1 𝑑𝑥

(iii) ∫ 𝑥(𝑥 2 + 3) 4𝑑𝑥 1 0

(iv) cos2 𝑥 sin3 𝑥 𝑑𝑥. Try 𝑡 = sin 𝑥 


1
Expert's answer
2021-10-13T17:48:17-0400

Solution:

(i) I=dxx(lnx)2I=\int \dfrac{dx}{x (\ln x)^2} ...(i)

Put lnx=t\ln x=t

1xdx=dt\Rightarrow\dfrac 1xdx=dt

So, (i) becomes,

I=dt(t)2=t2dt=t1+C=1t+C=1lnx+CI=\int \dfrac{dt}{ (t)^2} \\=\int t^{-2}dt \\=-t^{-1}+C \\=-\dfrac 1t+C \\=-\dfrac 1{\ln x}+C

(ii) I=xx+1dxI=\int \dfrac{x}{\sqrt{x+1}}dx ...(ii)

Put x+1=tx+1=t

dx=dt\Rightarrow dx=dt

So, (ii) becomes,

I=t1tdt=(tt1t)dt=(t1/2t1/2)dt=t3/23/2t1/21/2+C=23(x+1)3/22(x+1)1/2+CI=\int \dfrac{t-1}{\sqrt t}dt \\=\int (\dfrac{t}{\sqrt t}-\dfrac{1}{\sqrt t})dt \\=\int( t^{1/2}-t^{-1/2})dt \\=\dfrac{t^{3/2}}{3/2}-\dfrac{t^{1/2}}{1/2}+C \\=\dfrac 23(x+1)^{3/2}-2(x+1)^{1/2}+C

(iii) I=x(x2+3)4dxI=\int \dfrac {x}{(x^2+3)^4}dx ...(iii)

Put x2+3=tx^2+3=t

2xdx=dtxdx=dt2\Rightarrow 2xdx=dt \\\Rightarrow xdx=\dfrac{dt}2

So, (iii) becomes,

I=12dt(t)4=12t4dt=12(t33)+C=16(x2+3)3+CI=\dfrac 12\int \dfrac {dt}{(t)^4} \\=\dfrac 12\int t^{-4}{dt} \\=\dfrac 12(\dfrac{t^{-3}}{-3})+C \\=-\dfrac 1{6(x^2+3)^3}+C

(iv) I=cos2xsin3x dxI=\int \cos2x\sin 3x\ dx

=12(2cos2xsin3x)dx=12(sin(2x+3x)sin(2x3x))dx=12(sin(5x)sin(x))dx=12(sin(5x)+sin(x))dx=12(cos(5x)5cosx)+C=\dfrac12\int (2 \cos2x\sin 3x)dx \\=\dfrac12\int (\sin(2x+3x)-\sin(2x-3x))dx \\=\dfrac12\int (\sin(5x)-\sin(-x))dx \\=\dfrac12\int (\sin(5x)+\sin(x))dx \\=\dfrac12 (-\dfrac{\cos(5x)}5-\cos x)+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS