Show that the two curves (e', e², 1-e) and (1-theta , cos theta , sin theta ) intersect at the point (1, 1, 0). What is the angle between their tangents at that point?
For the two curves to intersect at (1,1,0), then the value of each poianat of the curve must be the same and equal to (1,1,0)
Suppose "(e^t,e^{2t}, 1-e^t)=(1-\\theta, \\cos \\theta, \\sin \\theta)\\\\\n\\implies t=0, \\theta=0\\\\\n\\text{At } t=0\\\\\n(e^t,e^{2t}, 1-e^t)=(1,1,0)\\\\\n\\text{At } \\theta=0\\\\\n(1-\\theta, \\cos \\theta, \\sin \\theta)=(1,1,0)\\\\\n\\text{Hence, the two curves intersect at } (1,1,0).\\\\\n\n\\text{Let } r(t)=(e^t,e^{2t}, 1-e^t), ~~r(\\theta)=(1-\\theta, \\cos \\theta, \\sin \\theta)\\\\\nr'(t)= (e^t, 2e^{2t}, -e^t)\\\\\nr'(0)=(1,2,-1)\\\\\nr'(\\theta)=(-1, -\\sin \\theta, \\cos \\theta)\\\\\nr'(0)=(-1,0,1)\\\\\n\\text{The angle between their tangent is }\\\\\n\\cos \\alpha=\\frac{(1,2,-1)\\cdot(-1,0,1)}{(\\sqrt{1^2+2^2+(-1)^2})\\cdot \\sqrt{(-1)^2+0^2+1^2}}\\\\\n\\cos \\alpha=\\frac{-2}{2\\sqrt{3}}\\\\\n\\alpha=cos^{-1}(-\\frac{1}{\\sqrt{3}})\\\\\n\\alpha= 125.26\u00b0"
Comments
Leave a comment