Question #241290

Let D = {(x, y) ∈ R

2

: x > 0, 0 < y < x3}. Define

f(x, y) = (


0, (x, y) ∈/ D

1, (x, y) ∈ D.


a) Approaching (0, 0) along the line y = mx for each real number m and the y-axis, prove that

lim(x,y)→(0,0) f(x, y) exists and compute the limit.

b) Argue whether f is continuous at (0, 0).


1
Expert's answer
2021-09-27T18:15:51-0400

(a)

lim(x,y)(0,0)f(x,y)=lim(x,y)(0,0)f(x,mx)So,lim(x,y)(0,0)f(x,0)lim(x,y)(0,0)f(x,y)lim(x,y)(0,0)(mx)30lim(x,y)(0,0)f(x,y)0Hence,lim(x,y)(0,0)f(x,y)=0\lim\limits_{(x,y)\rightarrow (0,0)} f(x,y)\\ =\lim\limits_{(x,y)\rightarrow (0,0)} f(x,mx)\\ So, \lim\limits_{(x,y)\rightarrow (0,0)} f(x,0)\leq\lim\limits_{(x,y)\rightarrow (0,0)} f(x,y)\leq\lim\limits_{(x,y)\rightarrow (0,0)} (mx)^3\\ \Rightarrow 0\leq\lim\limits_{(x,y)\rightarrow (0,0)} f(x,y)\leq0\\ Hence, \lim\limits_{(x,y)\rightarrow (0,0)} f(x,y)=0

(b) Yes, the function is continuous at x=0.x=0.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS