Let D = {(x, y) ∈ R
2
: x > 0, 0 < y < x3}. Define
f(x, y) = (
0, (x, y) ∈/ D
1, (x, y) ∈ D.
a) Approaching (0, 0) along the line y = mx for each real number m and the y-axis, prove that
lim(x,y)→(0,0) f(x, y) exists and compute the limit.
b) Argue whether f is continuous at (0, 0).
(a)
"\\lim\\limits_{(x,y)\\rightarrow (0,0)} f(x,y)\\\\\n=\\lim\\limits_{(x,y)\\rightarrow (0,0)} f(x,mx)\\\\\nSo, \\lim\\limits_{(x,y)\\rightarrow (0,0)} f(x,0)\\leq\\lim\\limits_{(x,y)\\rightarrow (0,0)} f(x,y)\\leq\\lim\\limits_{(x,y)\\rightarrow (0,0)} (mx)^3\\\\\n\\Rightarrow 0\\leq\\lim\\limits_{(x,y)\\rightarrow (0,0)} f(x,y)\\leq0\\\\\nHence, \\lim\\limits_{(x,y)\\rightarrow (0,0)} f(x,y)=0"
(b) Yes, the function is continuous at "x=0."
Comments
Leave a comment