Unit 1 Review:
2) Find f(g(x)) and g(f(x)) given f(x) = 2x+8 and g(x) = 1/2x - 4
Let f(x)=2x+8f(x) = 2x+8f(x)=2x+8 and g(x)=12x−4.g(x) = \frac{1}{2x - 4}.g(x)=2x−41.
Then f(g(x))=f(12x−4)=2⋅12x−4+8=2+16x−322x−4=16x−302x−4=8x−15x−2,f(g(x))=f(\frac{1}{2x - 4}) =2\cdot\frac{1}{2x - 4}+8=\frac{2+16x-32}{2x-4}=\frac{16x-30}{2x-4}=\frac{8x-15}{x-2},f(g(x))=f(2x−41)=2⋅2x−41+8=2x−42+16x−32=2x−416x−30=x−28x−15,
g(f(x))=g(2x+8)=12(2x+8)−4=14x+12.g(f(x)) =g(2x+8)=\frac{1}{2(2x+8) - 4}=\frac{1}{4x+12}.g(f(x))=g(2x+8)=2(2x+8)−41=4x+121.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment