Question #237604
Express the function g, defined by g(x)=1/√(x+√x) as a composition of three functions.
1
Expert's answer
2021-09-16T06:16:01-0400

Solution;

One possible way ;

If you let;

f(x)=xf(x)=\sqrt{x}

g(x)=x2+xg(x)=\sqrt{x^2+x}

h(x)=1xh(x)=\frac1x

First,obtain g of f(x);

gof=g(f(x))=(f(x))2+f(x)=(x)2+x=x+xg o f=g(f(x))=\sqrt{(f(x))^2+f(x)}=\sqrt{(\sqrt{x})^2+\sqrt{x}}=\sqrt{x+\sqrt{x}}

Now we plug g(f(x)) into h(x);

F(x)=h(gof)=h(g(f(x)))F(x)=h (gof)=h(g(f(x)))

F(x)=1g(f(x))F(x)=\frac{1}{g(f(x))} =1x+x\frac{1}{\sqrt{x+\sqrt{x}}}

Hence the expression of the function is three functions could be expressed as;

f(x)=xf(x)=\sqrt{x} ,g(x)=x2+xg(x)=\sqrt{x^2+x} , h(x)=1xh(x)=\frac1x ,F(x)=hF(x)=h o gg o ff








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS