The equation of the ellipse is given as (x/a)2+(y/b)2=1(x/a)^2+(y/b)^2 =1(x/a)2+(y/b)2=1
find the equation of the tangent at (x0, y0)
ddx((xa)2+(yb)2)=ddx(1).\frac{d}{dx}((\frac{x}{a})^2+(\frac{y}{b})^2)=\frac{d}{dx}(1).dxd((ax)2+(by)2)=dxd(1).
2xa2+2yb2y′=0.2\frac{x}{a^2}+2\frac{y}{b^2}y'=0.2a2x+2b2yy′=0.
y′=−b2a2xy.y'=-\frac{b^2}{a^2}\frac{x}{y}.y′=−a2b2yx.
y′(x0,y0)=−b2a2x0y0.y'(x_0,y_0)=-\frac{b^2}{a^2}\frac{x_0}{y_0}.y′(x0,y0)=−a2b2y0x0.
Tangent line: y−y0=−b2a2x0y0(x−x0).y-y_0=-\frac{b^2}{a^2}\frac{x_0}{y_0}(x-x_0).y−y0=−a2b2y0x0(x−x0).
Or y=−b2a2x0y0x+b2a2x0y0x0+y0.y=-\frac{b^2}{a^2}\frac{x_0}{y_0}x+\frac{b^2}{a^2}\frac{x_0}{y_0}x_0+y_0.y=−a2b2y0x0x+a2b2y0x0x0+y0.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments