The equation of the ellipse is given as "(x\/a)^2+(y\/b)^2 =1"
find the equation of the tangent at (x0, y0)
"\\frac{d}{dx}((\\frac{x}{a})^2+(\\frac{y}{b})^2)=\\frac{d}{dx}(1)."
"2\\frac{x}{a^2}+2\\frac{y}{b^2}y'=0."
"y'=-\\frac{b^2}{a^2}\\frac{x}{y}."
"y'(x_0,y_0)=-\\frac{b^2}{a^2}\\frac{x_0}{y_0}."
Tangent line: "y-y_0=-\\frac{b^2}{a^2}\\frac{x_0}{y_0}(x-x_0)."
Or "y=-\\frac{b^2}{a^2}\\frac{x_0}{y_0}x+\\frac{b^2}{a^2}\\frac{x_0}{y_0}x_0+y_0."
Comments
Leave a comment