"\\text{If \\( y = 3x - 3 \\) and $y^2 = 12x$ intersect then we will have the following: } \\\\\n (3x - 3)^2 = 12 x \\implies 9x^2 -18x -9 = 12x \\\\\n\n\\implies 9x^2 - 30x - 9 = 0 \\implies (x-3)(9x -3) = 0 \\implies x = 3 \\text{ or } x = \\frac{1}{3} \\\\\n\\text{Putting these into \\( y = 3x - 3\\) we have the following: }\\\\\n\\text{When $x = 3$ \\, \\, $y = 3(3) - 3 = 6$} \\\\\n\\text{When $x = \\frac 13$ \\, \\, $y = 3(\\frac 13) - 3 = -2$}\\\\\n\\text{Then we have that point $P = (3,6)$ and point $Q = (\\frac 13, -2)$} \\\\\n\\text{Since both the $x$ coordinates of $P$ and $Q$ are positive but their $y$ coordinates have values of different signs hence it is enough to say that $P$ and $Q$ lies on opposite side of $x$ axis} \\\\\n\\text{Note that from $y^2 = 12x$ we have that $y = \\sqrt{12x}$}\n\\\\\n\\text{Area bounded = } \\int_{\\frac13}^{3} \\left[ \\sqrt{12x} - (3x - 3) \\right] \\,dx = \\int_{\\frac13}^{3}\\left[ 2\\sqrt{3x} - 3x + 3 \\right]dx = \\left[\\frac{4\\sqrt3}{3}x\\sqrt x - \\frac32 x^2 + 3x\\right]_{\\frac13}^{3} \\\\\n\\qquad \\qquad \\qquad \\,\\,= \\left[\\frac{4\\sqrt3}{3}3\\sqrt 3 - \\frac32 (3)^2 + 3(3)\\right] - \\left[\\frac{4\\sqrt3}{3}(\\frac13)\\sqrt {\\frac13} - \\frac32 (\\frac13)^2 + 3(\\frac13)\\right] = 12 - \\frac{27}{2} + 9- \\frac49 +\\frac16 - 1 \\\\\n\\qquad \\qquad \\qquad \\,\\,= \\frac{56}{9} \\text{units square}"
Comments
Leave a comment