Question #198839

Indicate the function of f(x) belowin fourier series

0,-0,5<x<0

F(x) ={

x, 0<x<0, 5


1
Expert's answer
2022-01-10T14:06:57-0500
a0=1LLLf(x)dxa_0=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)dx

=10.500.5xdx=[x2]0.50=0.25=\dfrac{1}{0.5}\displaystyle\int_{0}^{0.5}xdx=[x^2]\begin{matrix} 0.5 \\ 0 \end{matrix}=0.25

an=1LLLf(x)cosnπxLdxa_n=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)\cos\dfrac{n\pi x}{L} dx

=10.500.5xcosnπx0.5dx=200.5xcos(2πnx)dx=\dfrac{1}{0.5}\displaystyle\int_{0}^{0.5}x\cos\dfrac{n\pi x}{0.5}dx=2\displaystyle\int_{0}^{0.5}x\cos(2\pi nx)dx

=2[xsin(2πnx)2πn+cos(2πnx)4π2n2]0.50=2[\dfrac{x\sin(2\pi n x)}{2\pi n}+\dfrac{\cos(2\pi n x)}{4\pi^2n^2}]\begin{matrix} 0.5\\ 0 \end{matrix}

=(1)n12π2n2=1π2(2k+1)2,kZ+=\dfrac{(-1)^n-1}{2\pi^2n^2}=-\dfrac{1}{\pi^2(2k+1)^2}, k\in Z^+



bn=1LLLf(x)sinnπxLdxb_n=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)\sin\dfrac{n\pi x}{L} dx

=10.500.5xsinnπx0.5dx=200.5xsin(2πnx)dx=\dfrac{1}{0.5}\displaystyle\int_{0}^{0.5}x\sin\dfrac{n\pi x}{0.5}dx=2\displaystyle\int_{0}^{0.5}x\sin(2\pi nx)dx

=2[xcos(2πnx)2πnsin(2πnx)4π2n2]0.50=2[-\dfrac{x\cos(2\pi n x)}{2\pi n}-\dfrac{\sin(2\pi n x)}{4\pi^2n^2}]\begin{matrix} 0.5\\ 0 \end{matrix}

=(1)n2πn=(1)k2π(k+1),kZ+=\dfrac{(-1)^n}{2\pi n}=-\dfrac{(-1)^k}{2\pi (k+1)}, k\in Z^+

f(x)=18k=0(cos(2π(2k+1)x)π2(2k+1)2+(1)ksin(2π(k+1)x)2π(k+1))f(x)=\dfrac{1}{8}-\displaystyle\sum_{k=0}^{\infin}(\dfrac{\cos(2\pi (2k+1) x)}{\pi^2(2k+1)^2}+\dfrac{(-1)^k\sin(2\pi (k+1) x)}{2\pi (k+1)})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS