Use a triple Integral to determine the volume of the tetrahedron with vertices (0,0,0), (3,0,0), (0,4,0) and (0,0,5).
The equation of the line that passes throughout the points (3,0,0) and (0,4,0) in the plane "xOy" is "\\frac{x}{3}+\\frac{y}{4}=1" and hence "y=4(1-\\frac{x}{3})". The equation of the plane that passes throughout the points (3,0,0), (0,4,0) and (0,0,5) is "\\frac{x}{3}+\\frac{y}{4}+\\frac{z}{5}=1" and thus "z=5(1-\\frac{x}{3}-\\frac{y}{4})". It follows that the volume "V" is uqual to
"V=\\int_{0}^{3}dx\\int_{0}^{4(1-\\frac{x}{3})}dy\\int_0^{5(1-\\frac{x}{3}-\\frac{y}{4})}dz=\n\\int_{0}^{3}dx\\int_{0}^{4(1-\\frac{x}{3})}5(1-\\frac{x}{3}-\\frac{y}{4})dy=\n5\\int_{0}^{3}(4(1-\\frac{x}{3})-4\\frac{x}{3}(1-\\frac{x}{3})-\\frac{1}{8}(4(1-\\frac{x}{3}))^2)dx=\n5\\int_{0}^{3}(4-\\frac{4x}{3}-4\\frac{x}{3}+\\frac{4x^2}{9}-2+4\\frac{x}{3}+2\\frac{x^2}{9})dx=\n5\\int_{0}^{3}(2-\\frac{4x}{3}+2\\frac{x^2}{3})dx=\n5(2x-\\frac{2x^2}{3}+\\frac{2x^3}{9})|_0^3=5(6-6+2)=10"
Comments
Leave a comment