A.1Let (x,y) be the centroid.x=m1+m2+m3m1x1+m2x2+m3x3y=m1+m2+m3m1y1+m2y2+m3y3Given, mass is 100 kg at each point.x=100+100+100100×2+100×2+100×0=34y=100+100+100100×2+100×(−1)+100×3=34Thus, centroid is(34,34).A.2Given, mass is 200 lb, 500lb and 1000lb at (3, 2), (4, 0) and (1, 5) respectively.x=200+500+1000200×3+500×4+1000×1=17003600=1736y=200+500+1000200×2+500×0+1000×5=17005400=1754Thus, centroid is(1736,1754).B.1.area(A)=∫03y(x)dx=∫03(6−2x)dx=(6x−x2)03=9Let (X, Y) be the centroid.X=A∫03xy(x)dx=91∫03(6x−2x2)dx=91(3x2−32x3)03=1Y=A21∫03y2(x)dx=91.21∫03(6−2x)2dx=181∫03(36−24x+4x2)dx=181(36x−12x2+34x3)03=2Thus, centroid is(1,2).B.2.area(A)=∫02(4x−x3)dx+∫−20(x3−4x)dx=(2x2−4x4)02+(4x4−2x2)−20=8Let(α,β)be the centroid.α=A∫02x(4x−x3)dx+∫−20x(x3−4x)dx=A∫02(4x2−x4)dx+∫−20(x4−4x2)dx=81((34x3−5x5)02+(5x5−34x3)−20)=0β=A21(∫02(4x−x3)2dx+∫−20(x3−4x)2dx)=16∫02(16x2−8x4+x6)dx+∫−20(16x2−8x4+x6)=16(38x3−58x5+7x7)02+(38x3−58x5+7x7)−20=105128Thus, centroid is(0,105128).
Comments