1.By mean value theorem:
f′(c)=b−af(b)−f(a), c∈[a,b]
Let f(x)=log(x+1)
Then:
x0+11=xlog(x+1), x0∈[0,x], x>0
log(x+1)=x0+1x
log(x+1)=xloge−(x0+1)
log10(x+1)=log10+xloge−(x0+1)
log10(x+1)=log10+xloge−(θx+1), θ∈[0,1]
2.Maclauren series:
f(x)=n=0∑∞n!f(n)(0)xn
Then:
y(0)=1
y′=excosx−exsinx=ex(cosx−sinx)
y′(0)=1
y′′=ex(cosx−sinx)−ex(cosx+sinx)=−2exsinx
y′′′=−2ex(cosx+sinx)
y′′′(0)=−2
y(4)=−2(ex(cosx+sinx)+ex(cosx−sinx))=−4excosx
y(4)(0)=−4
excosx=1+x−3x3−6x4+...
Comments