Question #169362

1Using Lagrange’s Mean value theorem Prove that log10(x + 1) =

x log10e

(1+θx)

Q.2 Show that excosx = 1 + x + (x2

/2) - (x3

/3) - (11x4

/24)


1
Expert's answer
2021-03-09T02:03:27-0500

1.By mean value theorem:

f(c)=f(b)f(a)ba, c[a,b]f'(c)=\frac{f(b)-f(a)}{b-a},\ c\isin [a,b]

Let f(x)=log(x+1)f(x)=log(x+1)

Then:

1x0+1=log(x+1)x, x0[0,x], x>0\frac{1}{x_0+1}=\frac{log(x+1)}{x},\ x_0\isin [0,x],\ x>0


log(x+1)=xx0+1log(x+1)=\frac{x}{x_0+1}

log(x+1)=xloge(x0+1)log(x+1)=xloge^{-(x_0+1)}

log10(x+1)=log10+xloge(x0+1)log10(x+1)=log10+xloge^{-(x_0+1)}

log10(x+1)=log10+xloge(θx+1), θ[0,1]log10(x+1)=log10+xloge^{-(\theta x+1)},\ \theta\isin [0,1]


2.Maclauren series:

f(x)=n=0f(n)(0)n!xnf(x)=\displaystyle\sum_{n=0}^{\infin}\frac{f^{(n)}(0)}{n!}x^n

Then:

y(0)=1y(0)=1

y=excosxexsinx=ex(cosxsinx)y'=e^xcosx-e^xsinx=e^x(cosx-sinx)

y(0)=1y'(0)=1

y=ex(cosxsinx)ex(cosx+sinx)=2exsinxy''=e^x(cosx-sinx)-e^x(cosx+sinx)=-2e^xsinx

y=2ex(cosx+sinx)y'''=-2e^x(cosx+sinx)

y(0)=2y'''(0)=-2

y(4)=2(ex(cosx+sinx)+ex(cosxsinx))=4excosxy^{(4)}=-2(e^x(cosx+sinx)+e^x(cosx-sinx))=-4e^xcosx

y(4)(0)=4y^{(4)}(0)=-4

excosx=1+xx33x46+...e^xcosx=1+x-\frac{x^3}{3}-\frac{x^4}{6}+...














































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS