1Using Lagrange’s Mean value theorem Prove that log10(x + 1) =
x log10e
(1+θx)
Q.2 Show that excosx = 1 + x + (x2
/2) - (x3
/3) - (11x4
/24)
1.By mean value theorem:
"f'(c)=\\frac{f(b)-f(a)}{b-a},\\ c\\isin [a,b]"
Let "f(x)=log(x+1)"
Then:
"\\frac{1}{x_0+1}=\\frac{log(x+1)}{x},\\ x_0\\isin [0,x],\\ x>0"
"log(x+1)=\\frac{x}{x_0+1}"
"log(x+1)=xloge^{-(x_0+1)}"
"log10(x+1)=log10+xloge^{-(x_0+1)}"
"log10(x+1)=log10+xloge^{-(\\theta x+1)},\\ \\theta\\isin [0,1]"
2.Maclauren series:
"f(x)=\\displaystyle\\sum_{n=0}^{\\infin}\\frac{f^{(n)}(0)}{n!}x^n"
Then:
"y(0)=1"
"y'=e^xcosx-e^xsinx=e^x(cosx-sinx)"
"y'(0)=1"
"y''=e^x(cosx-sinx)-e^x(cosx+sinx)=-2e^xsinx"
"y'''=-2e^x(cosx+sinx)"
"y'''(0)=-2"
"y^{(4)}=-2(e^x(cosx+sinx)+e^x(cosx-sinx))=-4e^xcosx"
"y^{(4)}(0)=-4"
"e^xcosx=1+x-\\frac{x^3}{3}-\\frac{x^4}{6}+..."
Comments
Leave a comment