Find the centroid of the area enclosed by y = 1 + sin(x) and y = 1 − sin(x) on
the interval [0, π]
"f(x) = 1 + sin(x)" "g(x) = 1-sin(x)" "a = 0 \\space\\space\\space\\space b = \\large\\frac{\\pi}{4}"
We apply the formulae that the coordinates of the centroid (= center of mass assuming constant density) of the region with top f(x), bottom g(x), left-hand side x = a, and right-hand side x = b are
"x = \\large\\frac{\\int_a^bx|f(x)-g(x)|dx}{\\int_a^b|f(x)-g(x)|dx}," "y= \\large\\frac{\\int_a^b\\frac{1}{2}|f(x)^2-g(x)^2|dx}{\\int_a^b|f(x)-g(x)|dx}"
"\\int_a^b|f(x)-g(x)|dx = \\int_0^{\\frac{\\pi}{4}}|1+sin(x)-1+sin(x)|=\\int_0^{\\frac{\\pi}{4}}2sin(x) = |-2cos(x)|_0^\\frac{\\pi}{4} = -2cos\\frac{\\pi}{4}+2cos0 = 2-\\sqrt{2}"
"\\int_a^bx|f(x)-g(x)|dx = \\int_0^{\\frac{\\pi}{4}}x|1+sin(x)-1+sin(x)|=\\int_0^{\\frac{\\pi}{4}}2xsin(x) = 2|sin(x)-xcos(x)|_0^\\frac{\\pi}{4} = 2(sin\\frac{\\pi}{4}-\\frac{\\pi}{4}cos(\\frac{\\pi}{4}))-2(sin0-0*cos0) = \\sqrt{2}(1-\\frac{\\pi}{4})"
"\\int_a^b\\frac{1}{2}|f(x)^2-g(x)^2|dx = \\int_0^{\\frac{\\pi}{4}}|1+2sin(x)+sin^2(x)-1+2sin(x)-sin^2(x)|=\\int_0^{\\frac{\\pi}{4}}4sin(x) = |-4cos(x)|_0^\\frac{\\pi}{4} = -4cos\\frac{\\pi}{4}+4cos0 = 4-2\\sqrt{2}"
"x = \\large\\frac{\\int_a^bx|f(x)-g(x)|dx}{\\int_a^b|f(x)-g(x)|dx} = \\frac{\\sqrt{2}(1-\\frac{\\pi}{4})}{2-\\sqrt{2}} = \\frac{4-\\pi}{4\\sqrt{2}-1} ," "y= \\large\\frac{\\int_a^b\\frac{1}{2}|f(x)^2-g(x)^2|dx}{\\int_a^b|f(x)-g(x)|dx} = \\frac{ 4-2\\sqrt{2}}{2-\\sqrt{2}}" "=2"
Comments
Leave a comment