Solution:
Let's draw a figure according to the question and label it.
Let AB be the ladder with length L. C is the point of intersection of hallways.
So, L = A C + B C L=AC+BC L = A C + BC
Given, B E = b , A D = a BE=b, AD=a BE = b , A D = a
Let C D = y , C E = x CD=y, CE=x C D = y , CE = x
Then, both triangles ACD and CEB are right-angled triangles.
By pythagoras theorem, in triangle ACD,
A D 2 + C D 2 = A C 2 ⇒ a 2 + y 2 = A C 2 AD^2+CD^2=AC^2
\\\Rightarrow a^2+y^2=AC^2 A D 2 + C D 2 = A C 2 ⇒ a 2 + y 2 = A C 2
⇒ A C = a 2 + y 2 \Rightarrow AC=\sqrt {a^2+y^2} ⇒ A C = a 2 + y 2
By pythagoras theorem, in triangle CEB,
C E 2 + E B 2 = B C 2 ⇒ x 2 + b 2 = B C 2 CE^2+EB^2=BC^2
\\\Rightarrow x^2+b^2=BC^2 C E 2 + E B 2 = B C 2 ⇒ x 2 + b 2 = B C 2
⇒ B C = x 2 + b 2 \Rightarrow BC=\sqrt {x^2+b^2} ⇒ BC = x 2 + b 2
Next, ∠ C A D = ∠ B C E \angle CAD=\angle BCE ∠ C A D = ∠ BCE [Corresponding angles]
We take their tangent as: C D A B = B E C E \dfrac{CD}{AB}=\dfrac{BE}{CE} A B C D = CE BE
⇒ y a = b x \Rightarrow \dfrac{y}{a}=\dfrac{b}{x} ⇒ a y = x b
⇒ y = a b x \Rightarrow y=\dfrac{ab}{x} ⇒ y = x ab ...(i)
Now, L = A C + B C = a 2 + y 2 + x 2 + b 2 L=AC+BC=\sqrt {a^2+y^2}+\sqrt {x^2+b^2} L = A C + BC = a 2 + y 2 + x 2 + b 2
= a 2 + ( a b x ) 2 + b ( x b ) 2 + 1 =\sqrt {a^2+(\dfrac{ab}{x})^2}+b\sqrt {(\dfrac{x}{b})^2+1} = a 2 + ( x ab ) 2 + b ( b x ) 2 + 1 [Using (i)]
Put x b = t \dfrac{x}{b}=t b x = t
L = a 1 + ( 1 t ) 2 + b ( t ) 2 + 1 L=a\sqrt {1+(\dfrac{1}{t})^2}+b\sqrt {(t)^2+1} L = a 1 + ( t 1 ) 2 + b ( t ) 2 + 1
= a t 2 + 1 t 2 + b t 2 + 1 =a\sqrt {\dfrac{t^2+1}{t^2}}+b\sqrt {t^2+1} = a t 2 t 2 + 1 + b t 2 + 1
= a t t 2 + 1 + b t 2 + 1 =\dfrac at\sqrt {t^2+1}+b\sqrt {t^2+1} = t a t 2 + 1 + b t 2 + 1
= t 2 + 1 ( a t + b ) =\sqrt {t^2+1}(\dfrac at+b) = t 2 + 1 ( t a + b ) ...(ii)
Now differentiating w.r.t. t t t ,
L ′ = ( t 2 + 1 ) ′ ( a t + b ) + t 2 + 1 ( a t + b ) ′ L'=(\sqrt {t^2+1})'(\dfrac at+b)+\sqrt {t^2+1}(\dfrac at+b)' L ′ = ( t 2 + 1 ) ′ ( t a + b ) + t 2 + 1 ( t a + b ) ′
= ( 1 2 t 2 + 1 × 2 t ) ( a t + b ) + t 2 + 1 ( − a t 2 + 0 ) =(\dfrac{1}{2\sqrt {t^2+1}}\times 2t)(\dfrac at+b)+\sqrt {t^2+1}(\dfrac {-a}{t^2}+0) = ( 2 t 2 + 1 1 × 2 t ) ( t a + b ) + t 2 + 1 ( t 2 − a + 0 )
= ( t t 2 + 1 ) ( a t + b ) − ( a t 2 + 1 t 2 ) =(\dfrac{t}{\sqrt {t^2+1}})(\dfrac at+b)-(\dfrac {a\sqrt {t^2+1}}{t^2}) = ( t 2 + 1 t ) ( t a + b ) − ( t 2 a t 2 + 1 )
Put L ′ = 0 L'=0 L ′ = 0
⇒ ( t t 2 + 1 ) ( a t + b ) − ( a t 2 + 1 t 2 ) = 0 \Rightarrow (\dfrac{t}{\sqrt {t^2+1}})(\dfrac at+b)-(\dfrac {a\sqrt {t^2+1}}{t^2})=0 ⇒ ( t 2 + 1 t ) ( t a + b ) − ( t 2 a t 2 + 1 ) = 0
⇒ ( t t 2 + 1 ) ( a t + b ) = a t 2 + 1 t 2 \Rightarrow (\dfrac{t}{\sqrt {t^2+1}})(\dfrac at+b)=\dfrac {a\sqrt {t^2+1}}{t^2} ⇒ ( t 2 + 1 t ) ( t a + b ) = t 2 a t 2 + 1
⇒ a + b t = a ( t 2 + 1 ) t 2 \Rightarrow {a+bt}=\dfrac {a(t^2+1)}{t^2} ⇒ a + b t = t 2 a ( t 2 + 1 )
⇒ t 2 ( a + b t ) = a ( t 2 + 1 ) \Rightarrow t^2( {a+bt})= a(t^2+1) ⇒ t 2 ( a + b t ) = a ( t 2 + 1 )
⇒ a t 2 + b t 3 = a ( t 2 + 1 ) ⇒ b t 3 = a ⇒ t 3 = a b ⇒ t = ( a b ) 1 / 3 \Rightarrow at^2+bt^3= a(t^2+1)
\\ \Rightarrow bt^3=a
\\ \Rightarrow t^3=\dfrac ab \Rightarrow t=(\dfrac ab)^{1/3} ⇒ a t 2 + b t 3 = a ( t 2 + 1 ) ⇒ b t 3 = a ⇒ t 3 = b a ⇒ t = ( b a ) 1/3
Put this value of t in (ii)
L = [ ( a b ) 1 / 3 ] 2 + 1 × ( a ( a b ) 1 / 3 + b ) L=\sqrt {[(\dfrac ab)^{1/3}]^2+1}\times(\dfrac a{(\dfrac ab)^{1/3}}+b) L = [( b a ) 1/3 ] 2 + 1 × ( ( b a ) 1/3 a + b )
= [ ( a b ) 2 / 3 ] + 1 × ( a ( a 1 / 3 b 1 / 3 ) + b ) =\sqrt {[(\dfrac ab)^{2/3}]+1}\times(\dfrac a{(\dfrac {a^{1/3}}{b^{1/3}})}+b) = [( b a ) 2/3 ] + 1 × ( ( b 1/3 a 1/3 ) a + b )
= a 2 / 3 + b 2 / 3 b 2 / 3 × ( a 2 / 3 b 1 / 3 + b ) =\sqrt {\dfrac {a^{2/3}+b^{2/3}}{b^{2/3}}}\times( {a^{2/3}b^{1/3}}+b) = b 2/3 a 2/3 + b 2/3 × ( a 2/3 b 1/3 + b )
= a 2 / 3 + b 2 / 3 b 1 / 3 × b 1 / 3 ( a 2 / 3 + b 2 / 3 ) = {\dfrac {\sqrt{a^{2/3}+b^{2/3}}}{b^{1/3}}}\times b^{1/3}( {a^{2/3}}+b^{2/3}) = b 1/3 a 2/3 + b 2/3 × b 1/3 ( a 2/3 + b 2/3 )
= ( a 2 / 3 + b 2 / 3 ) 3 / 2 =( {a^{2/3}}+b^{2/3})^{3/2} = ( a 2/3 + b 2/3 ) 3/2
This is required length of the ladder.
Comments