Two hallways, of widths 'a' and 'b', meet at right angles. What is the greatest possible length of a ladder which can be carried horizontally around the corner ?
Solution:
Let's draw a figure according to the question and label it.
Let AB be the ladder with length L. C is the point of intersection of hallways.
So, "L=AC+BC"
Given, "BE=b, AD=a"
Let "CD=y, CE=x"
Then, both triangles ACD and CEB are right-angled triangles.
By pythagoras theorem, in triangle ACD,
"AD^2+CD^2=AC^2\n\\\\\\Rightarrow a^2+y^2=AC^2"
"\\Rightarrow AC=\\sqrt {a^2+y^2}"
By pythagoras theorem, in triangle CEB,
"CE^2+EB^2=BC^2\n\\\\\\Rightarrow x^2+b^2=BC^2"
"\\Rightarrow BC=\\sqrt {x^2+b^2}"
Next, "\\angle CAD=\\angle BCE" [Corresponding angles]
We take their tangent as: "\\dfrac{CD}{AB}=\\dfrac{BE}{CE}"
"\\Rightarrow \\dfrac{y}{a}=\\dfrac{b}{x}"
"\\Rightarrow y=\\dfrac{ab}{x}" ...(i)
Now, "L=AC+BC=\\sqrt {a^2+y^2}+\\sqrt {x^2+b^2}"
"=\\sqrt {a^2+(\\dfrac{ab}{x})^2}+b\\sqrt {(\\dfrac{x}{b})^2+1}" [Using (i)]
Put "\\dfrac{x}{b}=t"
"L=a\\sqrt {1+(\\dfrac{1}{t})^2}+b\\sqrt {(t)^2+1}"
"=a\\sqrt {\\dfrac{t^2+1}{t^2}}+b\\sqrt {t^2+1}"
"=\\dfrac at\\sqrt {t^2+1}+b\\sqrt {t^2+1}"
"=\\sqrt {t^2+1}(\\dfrac at+b)" ...(ii)
Now differentiating w.r.t. "t" ,
"L'=(\\sqrt {t^2+1})'(\\dfrac at+b)+\\sqrt {t^2+1}(\\dfrac at+b)'"
"=(\\dfrac{1}{2\\sqrt {t^2+1}}\\times 2t)(\\dfrac at+b)+\\sqrt {t^2+1}(\\dfrac {-a}{t^2}+0)"
"=(\\dfrac{t}{\\sqrt {t^2+1}})(\\dfrac at+b)-(\\dfrac {a\\sqrt {t^2+1}}{t^2})"
Put "L'=0"
"\\Rightarrow (\\dfrac{t}{\\sqrt {t^2+1}})(\\dfrac at+b)-(\\dfrac {a\\sqrt {t^2+1}}{t^2})=0"
"\\Rightarrow (\\dfrac{t}{\\sqrt {t^2+1}})(\\dfrac at+b)=\\dfrac {a\\sqrt {t^2+1}}{t^2}"
"\\Rightarrow {a+bt}=\\dfrac {a(t^2+1)}{t^2}"
"\\Rightarrow t^2( {a+bt})= a(t^2+1)"
"\\Rightarrow at^2+bt^3= a(t^2+1)\n\\\\ \\Rightarrow bt^3=a\n\\\\ \\Rightarrow t^3=\\dfrac ab \\Rightarrow t=(\\dfrac ab)^{1\/3}"
Put this value of t in (ii)
"L=\\sqrt {[(\\dfrac ab)^{1\/3}]^2+1}\\times(\\dfrac a{(\\dfrac ab)^{1\/3}}+b)"
"=\\sqrt {[(\\dfrac ab)^{2\/3}]+1}\\times(\\dfrac a{(\\dfrac {a^{1\/3}}{b^{1\/3}})}+b)"
"=\\sqrt {\\dfrac {a^{2\/3}+b^{2\/3}}{b^{2\/3}}}\\times( {a^{2\/3}b^{1\/3}}+b)"
"= {\\dfrac {\\sqrt{a^{2\/3}+b^{2\/3}}}{b^{1\/3}}}\\times b^{1\/3}( {a^{2\/3}}+b^{2\/3})"
"=( {a^{2\/3}}+b^{2\/3})^{3\/2}"
This is required length of the ladder.
Comments
Leave a comment