Question #168985

Two hallways, of widths 'a' and 'b', meet at right angles. What is the greatest possible length of a ladder which can be carried horizontally around the corner ?


1
Expert's answer
2021-03-09T06:58:37-0500

Solution:

Let's draw a figure according to the question and label it.



Let AB be the ladder with length L. C is the point of intersection of hallways.

So, L=AC+BCL=AC+BC

Given, BE=b,AD=aBE=b, AD=a

Let CD=y,CE=xCD=y, CE=x

Then, both triangles ACD and CEB are right-angled triangles.

By pythagoras theorem, in triangle ACD,

AD2+CD2=AC2a2+y2=AC2AD^2+CD^2=AC^2 \\\Rightarrow a^2+y^2=AC^2

AC=a2+y2\Rightarrow AC=\sqrt {a^2+y^2}

By pythagoras theorem, in triangle CEB,

CE2+EB2=BC2x2+b2=BC2CE^2+EB^2=BC^2 \\\Rightarrow x^2+b^2=BC^2

BC=x2+b2\Rightarrow BC=\sqrt {x^2+b^2}

Next, CAD=BCE\angle CAD=\angle BCE [Corresponding angles]

We take their tangent as: CDAB=BECE\dfrac{CD}{AB}=\dfrac{BE}{CE}

ya=bx\Rightarrow \dfrac{y}{a}=\dfrac{b}{x}

y=abx\Rightarrow y=\dfrac{ab}{x} ...(i)

Now, L=AC+BC=a2+y2+x2+b2L=AC+BC=\sqrt {a^2+y^2}+\sqrt {x^2+b^2}

=a2+(abx)2+b(xb)2+1=\sqrt {a^2+(\dfrac{ab}{x})^2}+b\sqrt {(\dfrac{x}{b})^2+1} [Using (i)]

Put xb=t\dfrac{x}{b}=t

L=a1+(1t)2+b(t)2+1L=a\sqrt {1+(\dfrac{1}{t})^2}+b\sqrt {(t)^2+1}

=at2+1t2+bt2+1=a\sqrt {\dfrac{t^2+1}{t^2}}+b\sqrt {t^2+1}

=att2+1+bt2+1=\dfrac at\sqrt {t^2+1}+b\sqrt {t^2+1}

=t2+1(at+b)=\sqrt {t^2+1}(\dfrac at+b) ...(ii)

Now differentiating w.r.t. tt ,

L=(t2+1)(at+b)+t2+1(at+b)L'=(\sqrt {t^2+1})'(\dfrac at+b)+\sqrt {t^2+1}(\dfrac at+b)'

=(12t2+1×2t)(at+b)+t2+1(at2+0)=(\dfrac{1}{2\sqrt {t^2+1}}\times 2t)(\dfrac at+b)+\sqrt {t^2+1}(\dfrac {-a}{t^2}+0)

=(tt2+1)(at+b)(at2+1t2)=(\dfrac{t}{\sqrt {t^2+1}})(\dfrac at+b)-(\dfrac {a\sqrt {t^2+1}}{t^2})

Put L=0L'=0

(tt2+1)(at+b)(at2+1t2)=0\Rightarrow (\dfrac{t}{\sqrt {t^2+1}})(\dfrac at+b)-(\dfrac {a\sqrt {t^2+1}}{t^2})=0

(tt2+1)(at+b)=at2+1t2\Rightarrow (\dfrac{t}{\sqrt {t^2+1}})(\dfrac at+b)=\dfrac {a\sqrt {t^2+1}}{t^2}

a+bt=a(t2+1)t2\Rightarrow {a+bt}=\dfrac {a(t^2+1)}{t^2}

t2(a+bt)=a(t2+1)\Rightarrow t^2( {a+bt})= a(t^2+1)

at2+bt3=a(t2+1)bt3=at3=abt=(ab)1/3\Rightarrow at^2+bt^3= a(t^2+1) \\ \Rightarrow bt^3=a \\ \Rightarrow t^3=\dfrac ab \Rightarrow t=(\dfrac ab)^{1/3}

Put this value of t in (ii)

L=[(ab)1/3]2+1×(a(ab)1/3+b)L=\sqrt {[(\dfrac ab)^{1/3}]^2+1}\times(\dfrac a{(\dfrac ab)^{1/3}}+b)

=[(ab)2/3]+1×(a(a1/3b1/3)+b)=\sqrt {[(\dfrac ab)^{2/3}]+1}\times(\dfrac a{(\dfrac {a^{1/3}}{b^{1/3}})}+b)

=a2/3+b2/3b2/3×(a2/3b1/3+b)=\sqrt {\dfrac {a^{2/3}+b^{2/3}}{b^{2/3}}}\times( {a^{2/3}b^{1/3}}+b)

=a2/3+b2/3b1/3×b1/3(a2/3+b2/3)= {\dfrac {\sqrt{a^{2/3}+b^{2/3}}}{b^{1/3}}}\times b^{1/3}( {a^{2/3}}+b^{2/3})

=(a2/3+b2/3)3/2=( {a^{2/3}}+b^{2/3})^{3/2}

This is required length of the ladder.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS