Evaluate \int \:\int _D\left(x+y\right)^{-\frac{1}{2}}dA\: over the region π₯ β 2π¦ β€ 1 and π₯ β₯ π¦2 + 1
Evaluate "\\iint _D\\left(x+y\\right)^{-\\frac{1}{2}}dA" : over the region π₯ β 2π¦ β€ 1 and π₯ β₯ π¦2 + 1
Solution:
"\\begin{cases}\n x-2y=1 \\\\\n x=y^2+1\n\\end{cases}" "\\begin{cases}\n x=2y+1 \\\\\n x=y^2+1\n\\end{cases}" "\\begin{cases}\n x=1 & y=0 \\\\\n x=5 & y=2\n\\end{cases}"
Region:
"\\iint _D\\left(x+y\\right)^{-\\frac{1}{2}}dA=\\int_0^2dy\\int_{y^2+1}^{2y+1}\\frac{1}{\\sqrt{x+y}}dx="
"2\\int_0^2(\\sqrt{3y+1}-\\sqrt{y^2+y+1})dy="
"2\\int_0^2(\\sqrt{3y+1}-\\sqrt{(y+\\frac12)^2+\\frac34})dy="
"\\left(\\frac49(3y+1)^{\\frac32}-(y+\\frac12)\\sqrt{(y+\\frac12)^2+\\frac34}-\\frac 34\\ln{(y+\\frac12+\\sqrt{(y+\\frac12)^2+\\frac34})}\\right)|_0^2\\approx"
0.747874.
Answer: "\\iint _D\\left(x+y\\right)^{-\\frac{1}{2}}dA\\approx0.747874" .
Comments
Leave a comment