Evaluate ∬D(x+y)−21dA : over the region 𝑥 − 2𝑦 ≤ 1 and 𝑥 ≥ 𝑦2 + 1
Solution:
{x−2y=1x=y2+1 {x=2y+1x=y2+1 {x=1x=5y=0y=2
Region:
∬D(x+y)−21dA=∫02dy∫y2+12y+1x+y1dx=
2∫02(3y+1−y2+y+1)dy=
2∫02(3y+1−(y+21)2+43)dy=
(94(3y+1)23−(y+21)(y+21)2+43−43ln(y+21+(y+21)2+43))∣02≈
0.747874.
Answer: ∬D(x+y)−21dA≈0.747874 .
Comments