Question #160040

Evaluate \int \:\int _D\left(x+y\right)^{-\frac{1}{2}}dA\: over the region 𝑥 − 2𝑦 ≤ 1 and 𝑥 ≥ 𝑦2 + 1


1
Expert's answer
2021-02-24T07:34:52-0500

Evaluate D(x+y)12dA\iint _D\left(x+y\right)^{-\frac{1}{2}}dA : over the region 𝑥 − 2𝑦 ≤ 1 and 𝑥 ≥ 𝑦2 + 1

Solution:

{x2y=1x=y2+1\begin{cases} x-2y=1 \\ x=y^2+1 \end{cases} {x=2y+1x=y2+1\begin{cases} x=2y+1 \\ x=y^2+1 \end{cases} {x=1y=0x=5y=2\begin{cases} x=1 & y=0 \\ x=5 & y=2 \end{cases}

Region:

D(x+y)12dA=02dyy2+12y+11x+ydx=\iint _D\left(x+y\right)^{-\frac{1}{2}}dA=\int_0^2dy\int_{y^2+1}^{2y+1}\frac{1}{\sqrt{x+y}}dx=

202(3y+1y2+y+1)dy=2\int_0^2(\sqrt{3y+1}-\sqrt{y^2+y+1})dy=

202(3y+1(y+12)2+34)dy=2\int_0^2(\sqrt{3y+1}-\sqrt{(y+\frac12)^2+\frac34})dy=

(49(3y+1)32(y+12)(y+12)2+3434ln(y+12+(y+12)2+34))02\left(\frac49(3y+1)^{\frac32}-(y+\frac12)\sqrt{(y+\frac12)^2+\frac34}-\frac 34\ln{(y+\frac12+\sqrt{(y+\frac12)^2+\frac34})}\right)|_0^2\approx

0.747874.

Answer: D(x+y)12dA0.747874\iint _D\left(x+y\right)^{-\frac{1}{2}}dA\approx0.747874 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS