Show that there is real number x so that |x−1| = |x−2|.
Function zeros:
x - 1 = 0; x - 2 = 0.
x = 1; x = 2.
Сases:
a) x "\\ge" 2
x - 1 = x - 2
x - x = 1 - 2
0x = -1. Not possible. No solutions.
b) x "\\ge" 1 and x < 2
"\\begin{cases}\n x \\in[1,2) \\\\\n x - 1 = -(x-2) \n\\end{cases}"
"\\begin{cases}\n x \\in[1,2) \\\\\n x - 1 = -x+2 \n\\end{cases}"
"\\begin{cases}\n x \\in[1,2) \\\\\n 2x = 3 \n\\end{cases}"
"\\begin{cases}\n x \\in[1,2) \\\\\n x = 1.5 \n\\end{cases}"
x = 1.5 - solution of this equation.
c) x < 1
-(x - 1) = - (x - 2)
-x + 1 = -x +2
-x + x = 2 -1
-0x = 1. Not possible. No solutions.
Answer: 1.5 - one solutions.
Comments
Leave a comment