Question #157288

Use induction to prove that 1³+2³+...+(n−1)³ < n⁴/4 < 1³+2³+...+n³


1
Expert's answer
2021-02-28T07:14:19-0500

1³+2³+...+(n−1)³ < n⁴/4 < 1³+2³+...+n³

For n=1,

0<14<10 < \frac{1}{4}<1\\ This is true

We assume it is true for n=k, then

1³+2³+...+(k−1)³ < k⁴/4 < 1³+2³+...+k³

For n = k+1,

We show that

1³+2³+...+(k)³ < (k+1)⁴/4 < 1³+2³+...+k³+(k+1)³

Add k³ to (1)

1³+2³+...+(k−1)³ < k⁴/4 + k³ <1³+2³+...+k³+k³

But k⁴/4 + k³< k4+4k3+6k2+4k+14\frac{k^4+4k^3+6k^2+4k+1}{4}\\

k⁴/4 + k³< k⁴/4 + k³+ 6k2+4k+14=(k+1)44    \frac{6k^2+4k+1}{4}=\frac{(k+1)^4}{4}\\ \implies

1³+2³+...+(k)³ < k⁴/4 + k³< (k+1)⁴/4 < 1³+2³+...+k³+(k+1)³,

and since k³ < (k+1)³,

1³+2³+...+(k)³ < (k+1)⁴/4 < 1³+2³+...+k³+(k+1)³

Which is true for n=k+1


Hence the statement is true.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS