Use induction to prove that 1³+2³+...+(n−1)³ < n⁴/4 < 1³+2³+...+n³
1³+2³+...+(n−1)³ < n⁴/4 < 1³+2³+...+n³
For n=1,
"0 < \\frac{1}{4}<1\\\\" This is true
We assume it is true for n=k, then
1³+2³+...+(k−1)³ < k⁴/4 < 1³+2³+...+k³
For n = k+1,
We show that
1³+2³+...+(k)³ < (k+1)⁴/4 < 1³+2³+...+k³+(k+1)³
Add k³ to (1)
1³+2³+...+(k−1)³ < k⁴/4 + k³ <1³+2³+...+k³+k³
But k⁴/4 + k³< "\\frac{k^4+4k^3+6k^2+4k+1}{4}\\\\"
k⁴/4 + k³< k⁴/4 + k³+ "\\frac{6k^2+4k+1}{4}=\\frac{(k+1)^4}{4}\\\\\n\\implies"
1³+2³+...+(k)³ < k⁴/4 + k³< (k+1)⁴/4 < 1³+2³+...+k³+(k+1)³,
and since k³ < (k+1)³,
1³+2³+...+(k)³ < (k+1)⁴/4 < 1³+2³+...+k³+(k+1)³
Which is true for n=k+1
Hence the statement is true.
Comments
Leave a comment