Question #155139

Evaluate the integrals

i) sFds\int_{s}^{}\overrightarrow{F} \overrightarrow{ds}

ii) sF×ds\int_{s}^{}\overrightarrow{F} \times \overrightarrow{ds}


F=(x2+y,y+z,z+x)\overrightarrow{F} = ( x^2 +y , y + z , z + x) and s is the square 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑧 ≤ 2 and 𝑦 = 0 positively oriented along the positive Y-axis.


1
Expert's answer
2021-01-28T04:25:06-0500

for this area ds=jds=jdxdz\vec{ds}=\vec{j}ds=\vec{j}dxdz

(i)

SFds=0201((x2+y)i+(y+z)j+(z+x)k)jdxdz=\int_S\vec{F}\vec{ds}=\int_0^2\int_0^1((x^2+y)\vec{i}+(y+z)\vec{j}+(z+x)\vec{k})\vec{j}dxdz=


=0201(y+z)dxdz=0201zdxdz=\int_0^2\int_0^1(y+z)dxdz=\int_0^2\int_0^1zdxdz=

(y=0 on this area)

=02zxx=0x=1dz=02zdz=z2202=2=\int_0^2zx|_{x=0}^{x=1}dz=\int_0^2zdz=\frac{z^2}{2}|_0^2=2


(ii)

SF×ds=\int_S\vec{F}\times\vec{ds}=


=SijkFxFyFzdsxdsydsz==\int_S\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ F_x & F_y & F_z \\ ds_x &ds_y & ds_z \end{vmatrix}=

(here we multiply with dsx=0ds_x=0 and dsz=0ds_z=0 )


=S(i(Fzdsy)+kFxdsy)==\int_S(\vec{i}(-F_zds_y)+\vec{k}F_xds_y)=


=0201(i(z+x)+k(x2+y))dxdz==\int_0^2\int_0^1(-\vec{i}(z+x)+\vec{k}(x^2+y))dxdz=

(y=0 on this area)

=0201(i(z+x)+kx2)dxdz==\int_0^2\int_0^1(-\vec{i}(z+x)+\vec{k}x^2)dxdz=


=02(i(zx+x22)x=0x=1+kx33x=0x=1)dz==\int_0^2(-\vec{i}(zx+\frac{x^2}{2})|_{x=0}^{x=1}+\vec{k}\frac{x^3}{3}|_{x=0}^{x=1})dz=


=02(i(z+12)+k13)dz==\int_0^2(-\vec{i}(z+\frac{1}{2})+\vec{k}\frac{1}{3})dz=


=i(z22+z2)02+kz302==-\vec{i}(\frac{z^2}{2}+\frac{z}{2})|_0^2+\vec{k}\frac{z}{3}|_0^2=


=3i+23k=-3\vec{i}+\frac{2}{3}\vec{k}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS