Evaluate the integrals
i) "\\int_{s}^{}\\overrightarrow{F} \\overrightarrow{ds}"
ii) "\\int_{s}^{}\\overrightarrow{F} \\times \\overrightarrow{ds}"
"\\overrightarrow{F} = ( x^2 +y , y + z , z + x)" and s is the square 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑧 ≤ 2 and 𝑦 = 0 positively oriented along the positive Y-axis.
for this area "\\vec{ds}=\\vec{j}ds=\\vec{j}dxdz"
(i)
"\\int_S\\vec{F}\\vec{ds}=\\int_0^2\\int_0^1((x^2+y)\\vec{i}+(y+z)\\vec{j}+(z+x)\\vec{k})\\vec{j}dxdz="
"=\\int_0^2\\int_0^1(y+z)dxdz=\\int_0^2\\int_0^1zdxdz"=
(y=0 on this area)
"=\\int_0^2zx|_{x=0}^{x=1}dz=\\int_0^2zdz=\\frac{z^2}{2}|_0^2=2"
(ii)
"\\int_S\\vec{F}\\times\\vec{ds}="
"=\\int_S\\begin{vmatrix}\n\\vec{i} & \\vec{j} & \\vec{k} \\\\\nF_x & F_y & F_z \\\\\nds_x &ds_y & ds_z\n\\end{vmatrix}="
(here we multiply with "ds_x=0" and "ds_z=0" )
"=\\int_S(\\vec{i}(-F_zds_y)+\\vec{k}F_xds_y)="
"=\\int_0^2\\int_0^1(-\\vec{i}(z+x)+\\vec{k}(x^2+y))dxdz="
(y=0 on this area)
"=\\int_0^2\\int_0^1(-\\vec{i}(z+x)+\\vec{k}x^2)dxdz="
"=\\int_0^2(-\\vec{i}(zx+\\frac{x^2}{2})|_{x=0}^{x=1}+\\vec{k}\\frac{x^3}{3}|_{x=0}^{x=1})dz="
"=\\int_0^2(-\\vec{i}(z+\\frac{1}{2})+\\vec{k}\\frac{1}{3})dz="
"=-\\vec{i}(\\frac{z^2}{2}+\\frac{z}{2})|_0^2+\\vec{k}\\frac{z}{3}|_0^2="
"=-3\\vec{i}+\\frac{2}{3}\\vec{k}"
Comments
Leave a comment