for this area d s ⃗ = j ⃗ d s = j ⃗ d x d z \vec{ds}=\vec{j}ds=\vec{j}dxdz d s = j d s = j d x d z
(i)
∫ S F ⃗ d s ⃗ = ∫ 0 2 ∫ 0 1 ( ( x 2 + y ) i ⃗ + ( y + z ) j ⃗ + ( z + x ) k ⃗ ) j ⃗ d x d z = \int_S\vec{F}\vec{ds}=\int_0^2\int_0^1((x^2+y)\vec{i}+(y+z)\vec{j}+(z+x)\vec{k})\vec{j}dxdz= ∫ S F d s = ∫ 0 2 ∫ 0 1 (( x 2 + y ) i + ( y + z ) j + ( z + x ) k ) j d x d z =
= ∫ 0 2 ∫ 0 1 ( y + z ) d x d z = ∫ 0 2 ∫ 0 1 z d x d z =\int_0^2\int_0^1(y+z)dxdz=\int_0^2\int_0^1zdxdz = ∫ 0 2 ∫ 0 1 ( y + z ) d x d z = ∫ 0 2 ∫ 0 1 z d x d z =
(y=0 on this area)
= ∫ 0 2 z x ∣ x = 0 x = 1 d z = ∫ 0 2 z d z = z 2 2 ∣ 0 2 = 2 =\int_0^2zx|_{x=0}^{x=1}dz=\int_0^2zdz=\frac{z^2}{2}|_0^2=2 = ∫ 0 2 z x ∣ x = 0 x = 1 d z = ∫ 0 2 z d z = 2 z 2 ∣ 0 2 = 2
(ii)
∫ S F ⃗ × d s ⃗ = \int_S\vec{F}\times\vec{ds}= ∫ S F × d s =
= ∫ S ∣ i ⃗ j ⃗ k ⃗ F x F y F z d s x d s y d s z ∣ = =\int_S\begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
F_x & F_y & F_z \\
ds_x &ds_y & ds_z
\end{vmatrix}= = ∫ S ∣ ∣ i F x d s x j F y d s y k F z d s z ∣ ∣ =
(here we multiply with d s x = 0 ds_x=0 d s x = 0 and d s z = 0 ds_z=0 d s z = 0 )
= ∫ S ( i ⃗ ( − F z d s y ) + k ⃗ F x d s y ) = =\int_S(\vec{i}(-F_zds_y)+\vec{k}F_xds_y)= = ∫ S ( i ( − F z d s y ) + k F x d s y ) =
= ∫ 0 2 ∫ 0 1 ( − i ⃗ ( z + x ) + k ⃗ ( x 2 + y ) ) d x d z = =\int_0^2\int_0^1(-\vec{i}(z+x)+\vec{k}(x^2+y))dxdz= = ∫ 0 2 ∫ 0 1 ( − i ( z + x ) + k ( x 2 + y )) d x d z =
(y=0 on this area)
= ∫ 0 2 ∫ 0 1 ( − i ⃗ ( z + x ) + k ⃗ x 2 ) d x d z = =\int_0^2\int_0^1(-\vec{i}(z+x)+\vec{k}x^2)dxdz= = ∫ 0 2 ∫ 0 1 ( − i ( z + x ) + k x 2 ) d x d z =
= ∫ 0 2 ( − i ⃗ ( z x + x 2 2 ) ∣ x = 0 x = 1 + k ⃗ x 3 3 ∣ x = 0 x = 1 ) d z = =\int_0^2(-\vec{i}(zx+\frac{x^2}{2})|_{x=0}^{x=1}+\vec{k}\frac{x^3}{3}|_{x=0}^{x=1})dz= = ∫ 0 2 ( − i ( z x + 2 x 2 ) ∣ x = 0 x = 1 + k 3 x 3 ∣ x = 0 x = 1 ) d z =
= ∫ 0 2 ( − i ⃗ ( z + 1 2 ) + k ⃗ 1 3 ) d z = =\int_0^2(-\vec{i}(z+\frac{1}{2})+\vec{k}\frac{1}{3})dz= = ∫ 0 2 ( − i ( z + 2 1 ) + k 3 1 ) d z =
= − i ⃗ ( z 2 2 + z 2 ) ∣ 0 2 + k ⃗ z 3 ∣ 0 2 = =-\vec{i}(\frac{z^2}{2}+\frac{z}{2})|_0^2+\vec{k}\frac{z}{3}|_0^2= = − i ( 2 z 2 + 2 z ) ∣ 0 2 + k 3 z ∣ 0 2 =
= − 3 i ⃗ + 2 3 k ⃗ =-3\vec{i}+\frac{2}{3}\vec{k} = − 3 i + 3 2 k
Comments