(x-y)^3=A(x+y), prove that (2x+y)dy/dx = x + 2y
If "x+y=0=>x=-y"
"x=-y=>\\dfrac{dy}{dx}=-1"
"(2(0)+0)(-1)=0+2(0), True"
If "x+y\\not=0"
Differentiate both sides with respect to "x"
Use the Chain Rule
"(x-y)^2(3x+3y-3x\\dfrac{dy}{dx}-3y\\dfrac{dy}{dx}-x+y-x\\dfrac{dy}{dx}+y\\dfrac{dy}{dx})=0"
If "x=y," "\\dfrac{dy}{dx}=1"
Or
"(2x+y)\\dfrac{dy}{dx}=x+2y, True"
Therefore
Comments
Leave a comment