Question #148900

(x-y)^3=A(x+y), prove that (2x+y)dy/dx = x + 2y


1
Expert's answer
2020-12-08T06:25:50-0500

If x+y=0=>x=yx+y=0=>x=-y


(x+x)3=0=>x=0=>y=0(x+x)^3=0=>x=0=>y=0

x=y=>dydx=1x=-y=>\dfrac{dy}{dx}=-1

(2(0)+0)(1)=0+2(0),True(2(0)+0)(-1)=0+2(0), True

If x+y0x+y\not=0


(xy)3x+y=A\dfrac{(x-y)^3}{x+y}=A

Differentiate both sides with respect to xx


ddx((xy)3x+y)=ddx(A)\dfrac{d}{dx}\big(\dfrac{(x-y)^3}{x+y}\big)=\dfrac{d}{dx}(A)

Use the Chain Rule


3(xy)2(1dydx)(x+y)(1+dydx)(xy)3(x+y)2=0\dfrac{3(x-y)^2(1-\dfrac{dy}{dx})(x+y)-(1+\dfrac{dy}{dx})(x-y)^3}{(x+y)^2}=0

(xy)2(3x+3y3xdydx3ydydxx+yxdydx+ydydx)=0(x-y)^2(3x+3y-3x\dfrac{dy}{dx}-3y\dfrac{dy}{dx}-x+y-x\dfrac{dy}{dx}+y\dfrac{dy}{dx})=0

If x=y,x=y, dydx=1\dfrac{dy}{dx}=1


(2x+x)(1)=x+2x,True(2x+x)(1)=x+2x, True

Or


2x+4y4xdydx2ydydx=02x+4y-4x\dfrac{dy}{dx}-2y\dfrac{dy}{dx}=0

(2x+y)dydx=x+2y,True(2x+y)\dfrac{dy}{dx}=x+2y, True

Therefore


(2x+y)dydx=x+2y,True, for each x,y(2x+y)\dfrac{dy}{dx}=x+2y, \text {True, for each } x, y


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS