If x+y=0=>x=−y
(x+x)3=0=>x=0=>y=0
x=−y=>dxdy=−1
(2(0)+0)(−1)=0+2(0),True If x+y=0
x+y(x−y)3=A Differentiate both sides with respect to x
dxd(x+y(x−y)3)=dxd(A) Use the Chain Rule
(x+y)23(x−y)2(1−dxdy)(x+y)−(1+dxdy)(x−y)3=0
(x−y)2(3x+3y−3xdxdy−3ydxdy−x+y−xdxdy+ydxdy)=0 If x=y, dxdy=1
(2x+x)(1)=x+2x,True Or
2x+4y−4xdxdy−2ydxdy=0
(2x+y)dxdy=x+2y,True Therefore
(2x+y)dxdy=x+2y,True, for each x,y
Comments