Question #146434
Answer the following questions for the function
f(x)=x^3/(x^2−4)
defined on the interval [−19,16].

a.) Enter the x-coordinates of the vertical asymptotes of f(x) as a comma-separated list. That is, if there is just one value, give it; if there are more than one, enter them separated commas; and if there are none, enter NONE .

b)f(x) is concave up on the region=
1
Expert's answer
2020-11-24T17:35:17-0500

a) Since limx±2x3x24=\lim_{x\to\pm 2}\frac{x^3}{x^2-4}=\infty, the lines x=2x=-2 and x=2x=2 are the vertical asymptotes of f(x)f(x).


Answer: -2, 2


Let us find fist and second derivatives of the function f(x)=x3x24f(x)=\frac{x^3}{x^2-4} defined on the interval [19,16][−19,16] :


f(x)=3x2(x24)x32x(x24)2=x412x2(x24)2f'(x)=\frac{3x^2(x^2-4)-x^32x}{(x^2-4)^2}=\frac{x^4-12x^2}{(x^2-4)^2}


f(x)=(4x324x)(x24)2(x412x2)2(x24)2x(x24)4=(4x324x)(x24)4(x412x2)x(x24)3=f''(x)=\frac{(4x^3-24x)(x^2-4)^2-(x^4-12x^2)2(x^2-4)2x}{(x^2-4)^4}= \frac{(4x^3-24x)(x^2-4)-4(x^4-12x^2)x}{(x^2-4)^3}=


=4x516x324x3+96x4x5+48x3(x24)3=8x3+96x(x24)3=8x(x2+12)(x24)3=\frac{4x^5-16x^3-24x^3+96x-4x^5+48x^3}{(x^2-4)^3}=\frac{8x^3+96x}{(x^2-4)^3}=\frac{8x(x^2+12)}{(x^2-4)^3}





Since f(x)f(x) is concave up if f(x)>0f''(x)>0, we conclude that f(x)f(x) is concave up on the region (2,0)(2,16].(-2,0)\cup(2,16].


Answer: (2,0)(2,16].(-2,0)\cup(2,16].


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS