a) Since "\\lim_{x\\to\\pm 2}\\frac{x^3}{x^2-4}=\\infty", the lines "x=-2" and "x=2" are the vertical asymptotes of "f(x)".
Answer: -2, 2
Let us find fist and second derivatives of the function "f(x)=\\frac{x^3}{x^2-4}" defined on the interval "[\u221219,16]" :
"f'(x)=\\frac{3x^2(x^2-4)-x^32x}{(x^2-4)^2}=\\frac{x^4-12x^2}{(x^2-4)^2}"
"f''(x)=\\frac{(4x^3-24x)(x^2-4)^2-(x^4-12x^2)2(x^2-4)2x}{(x^2-4)^4}=\n\\frac{(4x^3-24x)(x^2-4)-4(x^4-12x^2)x}{(x^2-4)^3}="
"=\\frac{4x^5-16x^3-24x^3+96x-4x^5+48x^3}{(x^2-4)^3}=\\frac{8x^3+96x}{(x^2-4)^3}=\\frac{8x(x^2+12)}{(x^2-4)^3}"
Since "f(x)" is concave up if "f''(x)>0", we conclude that "f(x)" is concave up on the region "(-2,0)\\cup(2,16]."
Answer: "(-2,0)\\cup(2,16]."
Comments
Leave a comment