a) Since limx→±2x2−4x3=∞, the lines x=−2 and x=2 are the vertical asymptotes of f(x).
Answer: -2, 2
Let us find fist and second derivatives of the function f(x)=x2−4x3 defined on the interval [−19,16] :
f′(x)=(x2−4)23x2(x2−4)−x32x=(x2−4)2x4−12x2
f′′(x)=(x2−4)4(4x3−24x)(x2−4)2−(x4−12x2)2(x2−4)2x=(x2−4)3(4x3−24x)(x2−4)−4(x4−12x2)x=
=(x2−4)34x5−16x3−24x3+96x−4x5+48x3=(x2−4)38x3+96x=(x2−4)38x(x2+12)
Since f(x) is concave up if f′′(x)>0, we conclude that f(x) is concave up on the region (−2,0)∪(2,16].
Answer: (−2,0)∪(2,16].
Comments