Question #145763
Shown below are six statements about functions. Match each statement to one of the functions shown below which BEST matches that statement.

1. limx→6+f(x) and limx→6−f(x) both exist and are finite, but they are not equal.
2. The graph of y=f(x) has vertical tangent line at (6,f(6))
3. limx→6−f(x)=−∞.
4. limx→6+f(x) exists but limx→6−f(x) does not.
5. limx→6f(x)=∞.
6. limx→6f(x) exists but f is not continuous at 6.

A. f(x)=⎧⎩⎨⎪⎪⎪⎪cos(1x−6)02x+24if x<6if x=6if x>6
B. f(x)=⎧⎩⎨⎪⎪2x024−2xif x<6if x=6if x>6
C. f(x)=⎧⎩⎨⎪⎪2x02x−24if x<6if x=6if x>6
D. f(x)=x−6−−−−−√3
E. f(x)=1(x−6)2
F. f(x)=1x−6
1
Expert's answer
2020-11-30T19:07:59-0500

1. limx6+f(x)\lim\limits_{x\to 6^+}f(x) and limx6f(x)\lim\limits_{x\to 6^-}f(x) both exist and are finite, but they are not equal.

C. f(x)=x={2xif x<60if x=62x24if x>6f(x)=x = \begin{cases} 2x &\text{if } x<6 \\ 0 &\text{if } x=6 \\ 2x-24 &\text{if } x>6 \end{cases}



2. The graph of y=f(x)y=f(x) has vertical tangent line at (6,f(6))(6, f(6))

D. f(x)=x63f(x)=\sqrt[3]{x-6}



3.limx6f(x)=\lim\limits_{x\to 6^-}f(x)=-\infin

F. f(x)=1x6f(x)=\dfrac{1}{x-6}



4.limx6+f(x)\lim\limits_{x\to 6^+}f(x) exists but limx6f(x)\lim\limits_{x\to 6^-}f(x) does not

A. f(x)=x={cos(1x6)if x<60if x=62x+24if x>6f(x)=x = \begin{cases} \cos(\dfrac{1}{x-6}) &\text{if } x<6 \\ 0 &\text{if } x=6 \\ 2x+24 &\text{if } x>6 \end{cases}



5.limx6f(x)=\lim\limits_{x\to 6}f(x)=\infin

E. f(x)=1(x6)2f(x)=\dfrac{1}{(x-6)^2}



6. limx6f(x)\lim\limits_{x\to 6}f(x) exists but ff is not continuous at 66

B. f(x)=x={2xif x<60if x=6242xif x>6f(x)=x = \begin{cases} 2x &\text{if } x<6 \\ 0 &\text{if } x=6 \\ 24-2x &\text{if } x>6 \end{cases}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS