1. "\\lim\\limits_{x\\to 6^+}f(x)" and "\\lim\\limits_{x\\to 6^-}f(x)" both exist and are finite, but they are not equal.
C. "f(x)=x = \\begin{cases}\n 2x &\\text{if } x<6 \\\\\n 0 &\\text{if } x=6 \\\\\n 2x-24 &\\text{if } x>6\n\\end{cases}"
2. The graph of "y=f(x)" has vertical tangent line at "(6, f(6))"
D. "f(x)=\\sqrt[3]{x-6}"
3."\\lim\\limits_{x\\to 6^-}f(x)=-\\infin"
F. "f(x)=\\dfrac{1}{x-6}"
4."\\lim\\limits_{x\\to 6^+}f(x)" exists but "\\lim\\limits_{x\\to 6^-}f(x)" does not
A. "f(x)=x = \\begin{cases}\n \\cos(\\dfrac{1}{x-6}) &\\text{if } x<6 \\\\\n 0 &\\text{if } x=6 \\\\\n 2x+24 &\\text{if } x>6\n\\end{cases}"
5."\\lim\\limits_{x\\to 6}f(x)=\\infin"
E. "f(x)=\\dfrac{1}{(x-6)^2}"
6. "\\lim\\limits_{x\\to 6}f(x)" exists but "f" is not continuous at "6"
B. "f(x)=x = \\begin{cases}\n 2x &\\text{if } x<6 \\\\\n 0 &\\text{if } x=6 \\\\\n 24-2x &\\text{if } x>6\n\\end{cases}"
Comments
Leave a comment