a)applying L Hopital's rule
limx→02sinxcosx3cos2(x)sin(x)
limx→0sin(2x)3cos2(x)sin(x)
Again applying the rule ,
limx→0(cos(2x)⋅23(−sin(2x)sin(x)+cos3(x)))
Plugin the value for x=0,
=cos(2⋅0)⋅23(−sin(2⋅0)sin(0)+cos3(0))
= 23
b) limx→∞(cosx(x1))
Applyexponentrule:ax=eln(ax)=ex⋅ln(a)
cosx(x1)=exln(cos(x1))
=limx→∞(exln(cos(x1)))
ApplytheLimitChainRule:limx→∞⎝⎛ex1ln(cos(x1))⎠⎞
Applying L Hopitals's rule limx→∞⎝⎛e−x21x2tan(x1)⎠⎞
limx→∞e(−tan(x1))
= limx→∞e(−tan(∞1))
= limx→∞e(−tan(0))
limx→∞e(0)
=1
Hence limx→∞(cosx(x1))=1
c)Dividebyhighestdenominatorpower:1−x21xln(x)
=limx→∞(1−x21xln(x))
=limx→∞(1−x21)limx→∞(xln(x))
limx→∞(xln(x))=0 and limx→∞(1−x21)=1
=10 = 0
d)Applying L Hopital's rule
=limx→1(2xln(x)+1)
Pluginthevaluex=1
=2⋅1ln(1)+1
=21
Comments
Dear sire, please use the panel for submitting new questions.
1) ∫(1+√y)^1/4 /√y dy 2) I=∫sec^2(πlnx)/3x dx, x>1 3) I=∫(tan(4ϴ)^-1/4 sec^2(4ϴ) dϴ 4) I=∫cos(2+ln√x)/x dx, x>1