Use L’Hopital’s rule to evaluate: ˆ
(a) limx→0 (1-cos^3x)/sin^2x
(b) limx→∞ (cos 1/x)^x
(c) limx→∞ x ln x/(x^2 - 1)
(d) limx→1 x ln x /(x^2 - 1)
a)applying L Hopital's rule
"\\lim _{x\\to \\:0}\\frac{3\\cos ^2\\left(x\\right)\\sin \\left(x\\right)}{2sinxcosx}"
"\\lim _{x\\to \\:0}\\frac{3\\cos ^2\\left(x\\right)\\sin \\left(x\\right)}{\\sin \\left(2x\\right)}"
Again applying the rule ,
"\\lim _{x\\to \\:0}\\left(\\frac{3\\left(-\\sin \\left(2x\\right)\\sin \\left(x\\right)+\\cos ^3\\left(x\\right)\\right)}{\\cos \\left(2x\\right)\\cdot \\:2}\\right)"
Plugin the value for x=0,
"=\\frac{3\\left(-\\sin \\left(2\\cdot \\:0\\right)\\sin \\left(0\\right)+\\cos ^3\\left(0\\right)\\right)}{\\cos \\left(2\\cdot \\:0\\right)\\cdot \\:2}"
= "\\frac{3}{2}"
b) "\\lim _{x\\to \\infty \\:}\\left(\\cos ^x\\left(\\frac{1}{x}\\right)\\right)"
"\\mathrm{Apply\\:exponent\\:rule}:\\quad \\:a^x=e^{\\ln \\left(a^x\\right)}=e^{x\\cdot \\ln \\left(a\\right)}"
"\\cos ^x\\left(\\frac{1}{x}\\right)=e^{x\\ln \\left(\\cos \\left(\\frac{1}{x}\\right)\\right)}"
"=\\lim _{x\\to \\infty \\:}\\left(e^{x\\ln \\left(\\cos \\left(\\frac{1}{x}\\right)\\right)}\\right)"
"\\mathrm{Apply\\:the\\:Limit\\:Chain\\:Rule}:\\lim _{x\\to \\infty \\:}\\left(e^{\\frac{\\ln \\left(\\cos \\left(\\frac{1}{x}\\right)\\right)}{\\frac{1}{x}}}\\right)"
Applying L Hopitals's rule "\\lim _{x\\to \\infty \\:}\\left(e^{\\frac{\\frac{\\tan \\left(\\frac{1}{x}\\right)}{x^2}}{-\\frac{1}{x^2}}}\\right)"
"\\lim _{x\\to \\infty \\:}e^{\\left(-\\tan \\left(\\frac{1}{x}\\right)\\right)}"
= "\\lim _{x\\to \\infty \\:}e^{\\left(-\\tan \\left(\\frac{1}{\\infty}\\right)\\right)}"
= "\\lim _{x\\to \\infty \\:}e^{\\left(-\\tan (0)\\right)}"
"\\lim _{x\\to \\infty \\:}e^{(0)}"
=1
Hence "\\lim _{x\\to \\infty \\:}\\left(\\cos ^x\\left(\\frac{1}{x}\\right)\\right)=1"
c)"\\mathrm{Divide\\:by\\:highest\\:denominator\\:power:}\\:\\frac{\\frac{\\ln \\left(x\\right)}{x}}{1-\\frac{1}{x^2}}"
"=\\lim _{x\\to \\infty \\:}\\left(\\frac{\\frac{\\ln \\left(x\\right)}{x}}{1-\\frac{1}{x^2}}\\right)"
"=\\frac{\\lim _{x\\to \\infty \\:}\\left(\\frac{\\ln \\left(x\\right)}{x}\\right)}{\\lim _{x\\to \\infty \\:}\\left(1-\\frac{1}{x^2}\\right)}"
"\\lim _{x\\to \\infty \\:}\\left(\\frac{\\ln \\left(x\\right)}{x}\\right)=0" and "{\\lim _{x\\to \\infty \\:}\\left(1-\\frac{1}{x^2}\\right)}=1"
="\\frac{0}{1}" = 0
d)Applying L Hopital's rule
"=\\lim _{x\\to \\:1}\\left(\\frac{\\ln \\left(x\\right)+1}{2x}\\right)"
"\\mathrm{Plug\\:in\\:the\\:value}\\:x=1"
"=\\frac{\\ln \\left(1\\right)+1}{2\\cdot \\:1}"
"=\\frac{1}{2}"
Comments
Dear sire, please use the panel for submitting new questions.
1) ∫(1+√y)^1/4 /√y dy 2) I=∫sec^2(πlnx)/3x dx, x>1 3) I=∫(tan(4ϴ)^-1/4 sec^2(4ϴ) dϴ 4) I=∫cos(2+ln√x)/x dx, x>1
Leave a comment