Question #129849

Use L’Hopital’s rule to evaluate: ˆ

(a) limx→0 (1-cos^3x)/sin^2x

(b) limx→∞ (cos 1/x)^x

(c) limx→∞ x ln x/(x^2 - 1)

(d) limx→1 x ln x /(x^2 - 1)


1
Expert's answer
2020-08-20T17:58:32-0400

a)applying L Hopital's rule


limx03cos2(x)sin(x)2sinxcosx\lim _{x\to \:0}\frac{3\cos ^2\left(x\right)\sin \left(x\right)}{2sinxcosx}


limx03cos2(x)sin(x)sin(2x)\lim _{x\to \:0}\frac{3\cos ^2\left(x\right)\sin \left(x\right)}{\sin \left(2x\right)}

Again applying the rule ,

limx0(3(sin(2x)sin(x)+cos3(x))cos(2x)2)\lim _{x\to \:0}\left(\frac{3\left(-\sin \left(2x\right)\sin \left(x\right)+\cos ^3\left(x\right)\right)}{\cos \left(2x\right)\cdot \:2}\right)

Plugin the value for x=0,

=3(sin(20)sin(0)+cos3(0))cos(20)2=\frac{3\left(-\sin \left(2\cdot \:0\right)\sin \left(0\right)+\cos ^3\left(0\right)\right)}{\cos \left(2\cdot \:0\right)\cdot \:2}

= 32\frac{3}{2}


b) limx(cosx(1x))\lim _{x\to \infty \:}\left(\cos ^x\left(\frac{1}{x}\right)\right)


Applyexponentrule:ax=eln(ax)=exln(a)\mathrm{Apply\:exponent\:rule}:\quad \:a^x=e^{\ln \left(a^x\right)}=e^{x\cdot \ln \left(a\right)}


cosx(1x)=exln(cos(1x))\cos ^x\left(\frac{1}{x}\right)=e^{x\ln \left(\cos \left(\frac{1}{x}\right)\right)}


=limx(exln(cos(1x)))=\lim _{x\to \infty \:}\left(e^{x\ln \left(\cos \left(\frac{1}{x}\right)\right)}\right)


ApplytheLimitChainRule:limx(eln(cos(1x))1x)\mathrm{Apply\:the\:Limit\:Chain\:Rule}:\lim _{x\to \infty \:}\left(e^{\frac{\ln \left(\cos \left(\frac{1}{x}\right)\right)}{\frac{1}{x}}}\right)


Applying L Hopitals's rule limx(etan(1x)x21x2)\lim _{x\to \infty \:}\left(e^{\frac{\frac{\tan \left(\frac{1}{x}\right)}{x^2}}{-\frac{1}{x^2}}}\right)

limxe(tan(1x))\lim _{x\to \infty \:}e^{\left(-\tan \left(\frac{1}{x}\right)\right)}

= limxe(tan(1))\lim _{x\to \infty \:}e^{\left(-\tan \left(\frac{1}{\infty}\right)\right)}

= limxe(tan(0))\lim _{x\to \infty \:}e^{\left(-\tan (0)\right)}

limxe(0)\lim _{x\to \infty \:}e^{(0)}

=1


Hence limx(cosx(1x))=1\lim _{x\to \infty \:}\left(\cos ^x\left(\frac{1}{x}\right)\right)=1


c)Dividebyhighestdenominatorpower:ln(x)x11x2\mathrm{Divide\:by\:highest\:denominator\:power:}\:\frac{\frac{\ln \left(x\right)}{x}}{1-\frac{1}{x^2}}

=limx(ln(x)x11x2)=\lim _{x\to \infty \:}\left(\frac{\frac{\ln \left(x\right)}{x}}{1-\frac{1}{x^2}}\right)

=limx(ln(x)x)limx(11x2)=\frac{\lim _{x\to \infty \:}\left(\frac{\ln \left(x\right)}{x}\right)}{\lim _{x\to \infty \:}\left(1-\frac{1}{x^2}\right)}

limx(ln(x)x)=0\lim _{x\to \infty \:}\left(\frac{\ln \left(x\right)}{x}\right)=0 and limx(11x2)=1{\lim _{x\to \infty \:}\left(1-\frac{1}{x^2}\right)}=1

=01\frac{0}{1} = 0


d)Applying L Hopital's rule

=limx1(ln(x)+12x)=\lim _{x\to \:1}\left(\frac{\ln \left(x\right)+1}{2x}\right)


Pluginthevaluex=1\mathrm{Plug\:in\:the\:value}\:x=1

=ln(1)+121=\frac{\ln \left(1\right)+1}{2\cdot \:1}

=12=\frac{1}{2}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
22.09.20, 17:32

Dear sire, please use the panel for submitting new questions.

sire
22.09.20, 15:14

1) ∫(1+√y)^1/4 /√y dy 2) I=∫sec^2(πlnx)/3x dx, x>1 3) I=∫(tan(4ϴ)^-1/4 sec^2(4ϴ) dϴ 4) I=∫cos(2+ln√x)/x dx, x>1

LATEST TUTORIALS
APPROVED BY CLIENTS