As per the question,
u=tan−1x3+y3x3−y3
differentiate u with respect to x
dxdu=1+(x3+y3x3−y3)21×(x3+y3)2(x3+y3)3x2−(x3−y3)3x2
on solving above expression we get,
ux=(x3+y3)2+(x3−y3)21×(3x2y3+3x2y3)
ux=(x3+y3)2+(x3−y3)21×(6x2y3) ....(1)
Now differentiating u with respect to y.
dydu=1+(x3+y3x3−y3)21×(x3+y3)2(x3+y3)(−3y2)−(x3−y3)3y2
on solving we get,
uy=(x3+y3)2+(x3−y3)21×(−3x3y2−3x3y2)
uy=(x3+y3)2+(x3−y3)21×(−6x3y2) ...(2)
To show xux+yuy=0
(x3+y3)2+(x3−y3)2x×(6x2y3) +(x3+y3)2+(x3−y3)2y×(−6x3y2)
=(x3+y3)2+(x3−y3)21×(6x3y3−6x3y3)
=0
Hence xux+yuy=0 .
Comments
Leave a comment