As per the question,
u="tan^{-1}\\frac{x^3-y^3}{x^3+y^3}"
differentiate u with respect to x
"\\frac{du}{dx}=\\frac{1}{1+(\\frac{x^3-y^3}{x^3+y^3})^2}\\times\\frac{(x^3+y^3)3x^2-(x^3-y^3)3x^2}{(x^3+y^3)^2}"
on solving above expression we get,
"u_x=\\frac{1}{(x^3+y^3)^2+(x^3-y^3)^2}\\times(3x^2y^3+3x^2y^3)"
"u_x=\\frac{1}{(x^3+y^3)^2+(x^3-y^3)^2}\\times(6x^2y^3)" ....(1)
Now differentiating u with respect to y.
"\\frac{du}{dy}=\\frac{1}{1+(\\frac{x^3-y^3}{x^3+y^3})^2}\\times\\frac{(x^3+y^3)(-3y^2)-(x^3-y^3)3y^2}{(x^3+y^3)^2}"
on solving we get,
"u_y=\\frac{1}{(x^3+y^3)^2+(x^3-y^3)^2}\\times(-3x^3y^2-3x^3y^2)"
"u_y=\\frac{1}{(x^3+y^3)^2+(x^3-y^3)^2}\\times(-6x^3y^2)" ...(2)
To show "xu_x+yu_y=0"
"\\frac{x}{(x^3+y^3)^2+(x^3-y^3)^2}\\times(6x^2y^3)" "+\\frac{y}{(x^3+y^3)^2+(x^3-y^3)^2}\\times(-6x^3y^2)"
="\\frac{1}{(x^3+y^3)^2+(x^3-y^3)^2}\\times(6x^3y^3-6x^3y^3)"
=0
Hence "xu_x+yu_y=0" .
Comments
Leave a comment