Answer to Question #129749 in Calculus for gazal

Question #129749
If u = tan inverse ((x cube - y cube) /(x cube + y cube)) .Then show that x.ux + y.uy = 0
1
Expert's answer
2020-09-06T17:25:32-0400

As per the question,

u=tan1x3y3x3+y3tan^{-1}\frac{x^3-y^3}{x^3+y^3}

differentiate u with respect to x

dudx=11+(x3y3x3+y3)2×(x3+y3)3x2(x3y3)3x2(x3+y3)2\frac{du}{dx}=\frac{1}{1+(\frac{x^3-y^3}{x^3+y^3})^2}\times\frac{(x^3+y^3)3x^2-(x^3-y^3)3x^2}{(x^3+y^3)^2}

on solving above expression we get,

ux=1(x3+y3)2+(x3y3)2×(3x2y3+3x2y3)u_x=\frac{1}{(x^3+y^3)^2+(x^3-y^3)^2}\times(3x^2y^3+3x^2y^3)

ux=1(x3+y3)2+(x3y3)2×(6x2y3)u_x=\frac{1}{(x^3+y^3)^2+(x^3-y^3)^2}\times(6x^2y^3) ....(1)

Now differentiating u with respect to y.

dudy=11+(x3y3x3+y3)2×(x3+y3)(3y2)(x3y3)3y2(x3+y3)2\frac{du}{dy}=\frac{1}{1+(\frac{x^3-y^3}{x^3+y^3})^2}\times\frac{(x^3+y^3)(-3y^2)-(x^3-y^3)3y^2}{(x^3+y^3)^2}

on solving we get,

uy=1(x3+y3)2+(x3y3)2×(3x3y23x3y2)u_y=\frac{1}{(x^3+y^3)^2+(x^3-y^3)^2}\times(-3x^3y^2-3x^3y^2)

uy=1(x3+y3)2+(x3y3)2×(6x3y2)u_y=\frac{1}{(x^3+y^3)^2+(x^3-y^3)^2}\times(-6x^3y^2) ...(2)


To show xux+yuy=0xu_x+yu_y=0

x(x3+y3)2+(x3y3)2×(6x2y3)\frac{x}{(x^3+y^3)^2+(x^3-y^3)^2}\times(6x^2y^3) +y(x3+y3)2+(x3y3)2×(6x3y2)+\frac{y}{(x^3+y^3)^2+(x^3-y^3)^2}\times(-6x^3y^2)


=1(x3+y3)2+(x3y3)2×(6x3y36x3y3)\frac{1}{(x^3+y^3)^2+(x^3-y^3)^2}\times(6x^3y^3-6x^3y^3)

=0

Hence xux+yuy=0xu_x+yu_y=0 .




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment