The right answer is (b).
As D is the sphere with the radius r and the centre (0, 0, 0), we can do this integral in spherical coordinates.
This is the relationship between the Cartesian and spherical coordinate systems:
"x=\\rho sin\\phi cos\\theta,"
"y=\\rho sin\\phi sin\\theta,"
"z=\\rho cos\\phi,"
"x^2+y^2+z^2=\\rho^2."
We also have such restrictions on the coordinates in D:
"0\\le\\rho\\le r, 0\\le\\phi\\le \\pi, 0\\le\\theta\\le 2\\pi."
Then "dV=\\rho^2 sin\\phi d\\rho d\\theta d\\phi."
"\\iiint_D cdV=\\int_0^\\pi \\int_0^{2\\pi} \\int_0^r c\\rho^2 sin\\phi d\\rho d\\theta d\\phi="
"=\\int_0^\\pi \\int_0^{2\\pi} (\\frac{c\\rho^3}{3} |_0^r) sin\\phi d\\theta d\\phi="
"=\\int_0^\\pi \\int_0^{2\\pi} \\frac{cr^3}{3} sin\\phi d\\theta d\\phi=\n\\int_0^\\pi \\frac{cr^3}{3}(\\theta|_0^{2\\pi})sin\\phi d\\phi="
"=\\int_0^\\pi \\frac{2\\pi cr^3}{3} sin\\phi d\\phi==-\\frac{2\\pi cr^3}{3} (cos\\phi |_0^{\\pi})="
"=-\\frac{2\\pi cr^3}{3} (cos\\pi-cos0)=-\\frac{2\\pi cr^3}{3}*(-2)=\\frac{4\\pi cr^3}{3}."
Comments
Leave a comment